Читаем Шаг за шагом. Усилители и радиоузлы полностью

Наряду со многими ценными качествами (небольшие габариты, экономичность и др.) у приемо-усилительных ламп, есть одно совершенно бесспорное достоинство — можно зайти в радиомагазин и легко купить любую из них. Мощность, указанная среди параметров выходной лампы, относится к случаю, когда она работает в классе А при номинальном анодном напряжении — для большинства сетевых ламп 250 в. Изменив режим работы лампы и класс усиления, можно получить совсем другую величину Рвых. Минимальная мощность, как вы сами понимаете, не ограничена — можно довести лампу до того, что ее выходная мощность будет равна нулю. Выходные лампы обычно работают при анодных напряжениях не менее 150–180 вив этом случае дают мощность около 2 вт.

Что же касается верхней границы, то здесь основным ограничением является допустимая для данной лампы мощность рассеивания на аноде. Постоянная составляющая анодного тока Iа0 и постоянное напряжение на аноде Uа0, если их перемножить, покажут ту постоянную мощность Pа0, которую лампа потребляет от выпрямителя. Часть этой мощности расходуется на создание усиленного сигнала — хорошо знакомой нам мощной копии. Та часть потребляемой мощности Pа0, которая не идет в дело, естественно, в лампе теряется: в основном она затрачивается на нагревание анода.

Тепло, которое анод может рассеять без чрезмерного перегрева, ограничено, и, таким образом, ограничена мощность потерь Ра.п. Это и кладет предел увеличению выходной мощности: чтобы больше выдавать, нужно больше брать и, к сожалению, больше терять.

Кстати говоря, в классе А наибольшая мощность теряется при отсутствии сигнала. Ввиду постоянства Iа0 (Iпок) в классе А от выпрямителя потребляется всегда одна и та же мощность. И естественно, что вся она теряется на аноде, если нет никаких полезных затрат (если нет входного сигнала, то и выходная мощность равна нулю). В классе В, наоборот, при отсутствии сигнала лампа заперта и ничего не потребляет от выпрямителя, а с увеличением сигнала растет Iа0, и потери тоже возрастают. Наибольшая мощность потерь на аноде в классе АВ зависит от ряда факторов и обычно соответствует некоторому среднему уровню выходного сигнала.

Неудачно рассчитанный или плохо налаженный каскад, в котором мощность, теряемая на аноде, превышает допустимую величину, в буквальном смысле слова, виден издалека. Аноды ламп накаляются до красного свечения, объявившиеся в баллоне остатки газа усиленно ионизируются. Ионный ток создает в баллоне фиолетовое свечение, а положительные ионы бомбардируют и разрушают катод. Лампа не в состоянии долго работать в таких тяжелых условиях. Она очень быстро (при сильной перегрузке буквально через несколько минут) выходит из строя и часто заодно приводит в негодность такие ответственные узлы усилителя, как блок питания или выходной трансформатор.

С учетом возможностей той или иной лампы, в том числе с учетом ее допустимой мощности рассеивания на аноде и экранной сетке, рассчитаны типовые режимы для наиболее распространенных выходных ламп. Некоторые из этих режимов приведены в табл. 13, из которой видно, что две лампы 6ПЗС, работая в двухтактной схеме в классе АВ2 с фиксированным смещением от отдельного источника, развивают выходную мощность около 50 вт. Примерно такую же мощность, но в более легком режиме (класс AB1, автоматическое смещение создается на катодном сопротивлении) можно получить, если в каждом плече двухтактной схемы установить две соединенные параллельно лампы 6ПЗС. Не забудьте, что в этом случае вдвое уменьшается оптимальное сопротивление нагрузки и вдвое возрастает постоянная составляющая анодного тока (вместо двух стало четыре лампы!). Для получения нужного смещения в катодную цепь следует включить уже не 250 ом, как указано в табл. 13, а 125 ом.

Как видите, существующий ассортимент выходных (приемо-усилительных) ламп позволяет строить усилители самой различной мощности: от 1–2 до 50—100 вт.

Возможность получения той или иной мощности прежде всего зависит от схемы и режима выходного каскада и, конечно, от источника питания — от величины выпрямленного напряжения и от наибольшего тока, который может дать выпрямитель.

Усилители напряжения, работающие с выходными каскадами различной мощности, можно условно разделить на три группы: усилители для однотактных и двухтактных выходных каскадов, а также усилители для двухтактных каскадов, работающих с сеточными токами. Отличительная особенность третьей группы состоит в том, что последний каскад усилителя напряжения должен развивать сравнительно большую мощность — до 0,1–0,2 вт, которую потребляет сеточная цепь выходного каскада. Кроме того, напряжение сигнала на лампы выходного каскада обязательно должно подаваться через переходной трансформатор (рис. 58, 3, а).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже