Читаем Шаги за горизонт полностью

Таким образом, стремление достигнуть единого и общего понимания выдвигает вопросы, которые ведут к образованию абстрактных понятий. Потоки информации, которую накапливают в наблюдениях и экспериментах биолог или химик, двигаясь в русле этих вопросов, в конечном счете вливаются в обширную сферу атомной физики. Создается поэтому впечатление, что физика занимает центральное положение в науке. Она должна быть всеобъемлющей, то есть указывать ту фундаментальную, единую для всего в природе структуру, с которой можно было бы соотнести все явления и на основе которой можно было бы упорядочить все феномены. Физика оказывается, таким образом, общим основанием и химии, и биологии. Но даже для самой физики это никоим образом не самоочевидно — прежде всего потому, что существует великое множество физических явлений, внутренняя связь которых ускользает от понимания. Поэтому нам придется коснуться теперь и развития физики. Для начала бросим взгляд на самые ранние его этапы.

У истоков античного естествознания стоит, как известно, открытие Пифагора, гласящее (в передаче Аристотеля): «Вещи суть числа»[92]. Если интерпретировать пифагорейское учение (как оно описано Аристотелем) на современный лад, то, по-видимому, имелось в виду следующее: все явления можно упорядочить, а значит, и понять, связывая их с математическими формами. Но связь эта мыслилась не как произвольный акт нашей познавательной способности, а как нечто объективное. Говорится, например, так: «Числа — бытийная суть вещей» или «Все небо — гармония и число»[93]. Прежде всего имелся в виду, вообще говоря, просто мировой порядок. Для античной философии мир — это космос, а не хаос. Такое понимание мира еще не кажется слишком абстрактным. Астрономические наблюдения интерпретировались, например, с помощью понятия кругового движения. Небесные светила движутся по своим кругам. В силу высокой симметричности круг — особо совершенная фигура; движение по кругу ясно само по себе. Однако чтобы правильно сгруппировать все наблюдения сложного движения планет, нужно было сочетать уже несколько круговых движений, циклов и эпициклов. Этого было, впрочем, вполне достаточно для тогдашнего уровня точности. Солнечные и лунные затмения предсказывались в астрономии Птолемея весьма точно.

В противоположность этим древним воззрениям ньютоновская физика в самом начале Нового времени выдвинула следующий вопрос: нет ли у движения Луны вокруг Земли чего-то общего с полетом падающего или брошенного камня? Открытие, что здесь существует общность, позволяющая рассматривать вещи исключительно под этим одним углом зрения в отвлечении от множества других, весьма глубоких различий, относится в истории науки к числу событий, наиболее богатых последствиями. В процессе описываемого обобщения было сформировано понятие силы, которая вызывает изменение количества движения тела. В разбираемом случае речь шла о силе тяготения. Хотя понятие силы еще тесно связано с чувственным опытом, например с ощущениями, сопровождающими подъем грузов, тем не менее в рамках ньютоновской аксиоматики оно становится вполне абстрактным понятием, которое определяется величиной изменения количества движения и никак не связано с этими ощущениями. С помощью немногих понятий, таких, как масса, ускорение, количество движения, сила, Ньютон строит замкнутую систему аксиом, достаточную — если отвлечься от прочих телесных характеристик — для теоретического описания всех механических движений. Впоследствии, как известно, эта система аксиом, подобно понятию числа в математике, оказалась чрезвычайно продуктивной. В течение двух столетий математики и физики получили интереснейшие результаты из того положения Ньютона, которое мы учим в школе в простейшей формулировке: масса X ускорение = сила. Уже сам Ньютон начал разрабатывать теорию планетных движений, и в последующей астрономии она была развита и уточнена. Было изучено и теоретически описано вращательное движение, получила развитие механика жидких тел и теория упругости, была математически разработана аналогия между механикой и оптикой.

Здесь, впрочем, следует особо подчеркнуть два обстоятельства.

Во-первых, если интересоваться только прагматической стороной науки и сравнивать, скажем, ньютоновскую механику с античной астрономией единственно по их способности делать астрономические предсказания, то физика Ньютона, во всяком случае на первых этапах развития, вряд ли превзойдет в чем-либо античную астрономию. Комбинируя циклы и эпициклы, можно было воспроизводить движение планет, вообще говоря, с какой угодно точностью. Убедительность ньютоновской физики коренилась, следовательно, отнюдь не в ее практической результативности. Сила ее обуславливалась в первую очередь способностью обобщать, охватывать единым взором крайне разнородные явления и давать им единообразное объяснение.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже