Читаем Шаги за горизонт полностью

Следовало бы, пожалуй, упомянуть о том, что еще до 1925 года, когда это произошло, Борн в своем геттингенском семинаре 1924 года подчеркнул, что неправильно списывать трудности квантовой теории только на счет взаимодействия между излучением и механической системой. Он стоял за то, чтобы пересмотреть механику и заменить ее своеобразной квантовой механикой, создав тем самым базу для понимания атомных явлений. А потом было сформулировано матричное умножение. Борн и Йордан, как и независимо от них Дирак, открыли, что те дополнительные условия, которые в моей первой работе были присоединены к матричному умножению, могут быть записаны в форме изящного уравнения.

pq — qp = h/2i

Им удалось тем самым создать простую математическую схему квантовой механики.

Но и после этого нельзя было сказать, что же, собственно говоря, такое это дискретное стационарное состояние; и тут я перехожу ко второй части моего доклада — к понятию «состояние». В 1925 году мы располагали методом для расчета дискретных значений энергии атома. Существовал также, по меньшей мере в принципе, и метод для расчета вероятностей перехода. Но в чем заключалось это состояние атома? Как его можно было описать? Описание не могло опереться на картину электронной орбиты. До сих пор стационарное состояние поддавалось описанию только через указание энергии и вероятности перехода на другой энергетический уровень; но картины атома не существовало. Более того, было ясно, что в определенных случаях существуют и нестационарные состояния. Простейшим примером нестационарного состояния служил электрон, движущийся через камеру Вильсона. Вопрос заключался, по существу, в том, как трактовать подобное состояние, временами встречающееся в природе. Поддается ли такой феномен, как путь электрона через камеру с водяным туманом, описанию на абстрактном языке матричной механики?

К счастью, Шрёдингером была разработана в те годы волновая механика. А в волновой механике все выглядело совершенно иначе. Она позволяла определить волновую функцию для дискретного стационарного состояния. Какое-то время Шрёдингер думал, что дискретное стационарное состояние может быть наглядно представлено следующим образом. Мы имеем трехмерную стоячую волну — ее можно изобразить как произведение известной пространственной функции и периодической временной функции eit, — и абсолютный квадрат этой волновой функции означает электрическую плотность. Частота этой стоячей волны сопоставима с термом в спектральном законе. В этом и заключался решающий новый момент шредингеровской идеи. Эти термы не обязательно должны были означать энергетические уровни; они означали просто частоты. Так Шрёдингер пришел к новой «классической» картине дискретных стационарных состояний, которую он вначале считал действительно пригодной для применения в атомной теории. Но потом очень скоро выяснилось, что и это в свою очередь невозможно. В Копенгагене летом 1926 года дело дошло до жарких споров. Шрёдингер надеялся, что волновая картина атома — с постоянным, описываемым волновой функцией, перераспределением материи вокруг его ядра — способна заменить старые модели квантовой теории. Дискуссия с Бором привела, однако, к тому заключению, что подобная картина непригодна даже для объяснения закона Планка. Крайне важным для истолкования явилось установление того, что собственные значения уравнения Шрёдингера — не просто частоты, они — действительно энергии.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже