Оказавшись перед выбором между доктором из плоти и крови и системой искусственного интеллекта (ИИ), способной диагностировать болезни, Педро Домингос без колебаний готов вручить свою жизнь ИИ. «Машине я склонен доверять больше, чем врачу», – провозглашает Домингос, специалист по информатике из Вашингтонского университета в Сиэтле. Надо признать, такие уверенные заявления в поддержку ИИ сейчас редки на фоне обильной критики ИИ: многие разочарованы и говорят, что пока ИИ, на который возлагали столь большие надежды, не оправдал их ожиданий.
Еще в 1960-е годы разнообразные системы искусственного интеллекта стали демонстрировать многообещающие перспективы: ожидалось, что они смогут воспроизвести ключевые аспекты человеческого сознания. Ученые начали с применения математической логики, чтобы машина могла получать знания о реальном мире и размышлять о нем. Но вскоре математическая логика оказалась настоящей смирительной рубашкой для ИИ. Да, в некоторых типах рассуждения, сходных с человеческими, логика может оказаться продуктивной. Но она изначально непригодна, когда вы имеете дело с неопределенностью.
Однако после затянувшейся «зимы тревоги», куда сфера ИИ сама себя заковала, эта область, так долго подвергавшаяся критике, снова расцветает. Изощренные компьютерные системы демонстрируют зачатки как раз таких способностей, мечта о которых когда-то и породила интерес к ИИ: умение рассуждать подобно человеку – даже в мире, полном хаоса и статистического шума.
Одна из основ такого возрождения ИИ – так называемое вероятностное программирование, сочетающие в себе логическую базу старого ИИ с мощью современной статистики и теории вероятностей. «Это вполне естественное объединение двух наиболее сильных теорий, которые удалось создать для того, чтобы понять мир и рассуждать о нем», – говорит Стюарт Рассел, один из пионеров современного ИИ, работающий в Калифорнийском университете в Беркли. Столь могучая комбинация наконец-то начинает рассеивать мглу долгой зимы ИИ. «В этой области явно наступает весна», – полагает когнитивист Джош Тененбаум из Массачусетского технологического института (МТИ).
Сам термин «искусственный интеллект» придумал в 1956 году Джон Маккарти из того же МТИ. В тут пору он выступал за широкое применение логики при создании компьютерных систем, способных «рассуждать». Этот подход затем усовершенствовали, обратившись к так называемой логике первого порядка, в рамках которой знание о реальном мире моделируется посредством формализованных математических знаков и символов. Метод создали для работы с объектами и взаимосвязей между ними. Его вполне можно было применять для рассуждений и даже делать полезные выводы. К примеру, если у человека X весьма заразная болезнь Y, и если X находился в тесном контакте с человеком Z, при использовании логики мы заключаем, что у Z болезнь Y.
Однако самым грандиозным триумфом для логики первого порядка стало то, что она позволила конструировать модели нарастающей сложности из самых мелких строительных блоков. Например, вышеприведенный сценарий можно было бы легко распространить на эпидемиологическую модель для смертельных инфекционных заболеваний и на ее основе делать умозаключения о движении этих недугов. Способность логики выстраивать все более масштабные идеи на основе идей вполне скромных даже вроде бы предполагает, что и в человеческом сознании могут протекать сходные процессы.
В этом состояла хорошая новость. «Печально то, что в конечном счете такой подход не оправдал ожиданий», – говорит Ноа Гудман, стэнфордский когнитивист. Дело в том, что использование логики для представления с ее помощью некого знания, а затем рассуждений о нем, требует, чтобы наши знания о реальном мире отличались фантастической точностью. Тут не должно быть никакой двусмысленности. Либо «истинно», либо «ложно», и никаких «может быть». К сожалению, реальный мир полон неопределенности, статистического шума и исключений практически из всех общих правил. Системам ИИ, построенным на основе логики первого порядка, попросту не удавалось справиться с таким безобразием. Допустим, вы хотите определить, болен ли Z недугом Y. Правило должно быть однозначным: если Z контактировал с X, то Z болен недугом Y. Логика первого порядка не в состоянии разобраться в сценарии, где Z может заразиться от Х, а может не заразиться.
Возникла и еще одна существенная проблема: такой подход не работает «задом наперед». Скажем, если вы знаете, что Z страдает болезнью Y, невозможно с абсолютной уверенностью заключить, что Z подхватил ее от X. Вполне типичная ситуация для медицинской диагностики, постоянно сталкивающейся с такими трудностями. Логические правила и закономерности привязывают болезни к симптомам, но врач, который имеет дело с ними, должен делать умозаключения о причинах болезни. «Для этого требуется перевернуть логическую формулу, но дедукция здесь не очень-то годится», – подчеркивает Тененбаум.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное