Читаем Шесть невозможностей. Загадки квантового мира полностью

Пока все логично, беспокоиться не о чем. Но Бор быстро заводит нас в мутные воды. Именно здесь в дело вступает вероятность. Шрёдингер, предлагая свое волновое уравнение, считал его буквальным описанием электрона (или другого квантового объекта; просто электрон – простейший пример, его удобно использовать в качестве иллюстрации). Для него электрон действительно был волной. Однако, приняв от Шрёдингера эстафетную палочку, Бор устремился в другую сторону: он совместил волновое уравнение Шрёдингера с идеями Макса Борна о квантовой вероятности. Получилась очень странная, даже немного пугающая смесь, которая работала (и работает до сих пор), когда дело касается квантовых расчетов, но стоит перестать о ней думать, как тут же начинает болеть голова. В этой новой картине выведенное Шрёдингером уравнение предлагается рассматривать как «волну вероятности», а шанс обнаружения электрона в конкретной точке определяется «квадратом волновой функции»; для этого уравнение, описывающее волну как таковую, по сути, в каждой точке умножают само на себя. Когда мы измеряем или наблюдаем квантовый объект, волновая функция «схлопывается» в точку, определяемую вероятностями. И хотя одни локации более вероятны, чем другие, в принципе, электрон мог бы появиться в любой точке из тех, на которые распространяется волновая функция. Приведем один очень простой пример, который подчеркнет странность такого поведения.

Представьте себе единичный электрон, запертый в ящике. Волна вероятности распространяется так, что равномерно заполняет этот ящик, и это означает, что шансы обнаружить электрон в любой точке внутри ящика абсолютно одинаковы. Разделим ящик пополам перегородкой. Здравый смысл подсказывает нам, что теперь электрон должен оказаться в одной из половин ящика. Но копенгагенская интерпретация (КИ) утверждает, что волна вероятности по-прежнему заполняет обе половины ящика и электрон с равной вероятностью может быть обнаружен по любую сторону от перегородки. Теперь распилим ящик вдоль по центру перегородки и получим два ящика. Один оставим в лаборатории, а второй поместим в ракету и отправим на Марс. Согласно Бору, у нас по-прежнему будут равные шансы – 50/50 – обнаружить электрон в ящике в лаборатории или в таком же ящике на Марсе. Теперь откроем ящик, оставшийся в лаборатории. Мы либо обнаружим в нем электрон, либо нет, но волновая функция в любом случае схлопнется. Если ящик в лаборатории пуст, электрон находится на Марсе; если же электрон обнаружен, то ящик на Марсе пуст. Это не то же самое, что сказать, что наш электрон «всегда находился» либо в той половине ящика, либо в этой: КИ настаивает, что схлопывание происходит только тогда, когда проверяется содержимое ящика в лаборатории. Это суть идеи, стоящей за парадоксом ЭПР и знаменитой загадкой Шрёдингера про кота, живого и мертвого одновременно. Но прежде чем углубиться в эту историю, я хочу посмотреть, как копенгагенская интерпретация объясняет эксперимент с двумя отверстиями.

Согласно КИ, которую преподавали мне в бытность студентом и до сих пор преподают слишком многим как «единственный» способ «понимания» квантовой механики, электрон испускается из некоего источника – электронной пушки – с одной стороны экспериментальной установки как частица. И сразу же растворяется в «волну вероятности», которая распространяется по установке и направляется к экрану детектора с другой ее стороны. Эта волна проходит через все открытые отверстия, интерферируя сама с собой (или нет, как получится), и, дойдя до детектора, отображается как рисунок вероятностей, который распределяется по экрану. В этот момент волна «схлопывается» и вновь превращается в частицу, положение которой на экране определяется случайным образом, но в соответствии с этими вероятностями. Это называется «схлопыванием» (коллапсом) волновой функции: электрон путешествует как волна, но на место прибывает как частица.


Эрвин Шрёдингер

Legion-Media


Волна, однако, несет с собой не только вероятности. Если у квантового объекта есть выбор, в каком состоянии пребывать (к примеру, электрон может обладать положительным или отрицательным спином), оба эти состояния каким-то образом включены в его волновую функцию. Такая ситуация называется «суперпозицией состояний», а состояние, в котором в итоге оказывается квантовый объект в момент его обнаружения или взаимодействия с другим объектом, также определяется в момент схлопывания волновой функции. В 1955 г., читая лекцию в Сент-Эндрюсском университете, Вернер Гейзенберг сказал, что «переход от “возможного” к “действительному” происходит во время акта наблюдения».

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература