Однако Смолин подозревает, что сама квантовая механика есть приближенная версия какого-то более глубокого описания Вселенной (это и побудило его глубоко погрузиться в эти мутные воды), и заходит так далеко, что утверждает: если это так, то обмен сигналами со сверхсветовой скоростью вполне может оказаться возможным. О том, что мы пока не пришли к окончательному варианту теории, свидетельствует один момент. Возможно, вы уже заметили, что взаимодействие биэйблов подразумевает существование уникального космического времени (чтобы эти взаимодействия могли происходить одновременно), а это требует расширения теории относительности[21]
. «Квантовая физика, – говорит Смолин, – должна быть приближенным вариантом некой космологической теории, которая формулируется на другом языке».Искать эти фундаментальные законы, возможно, следует в экспериментах с участием систем, существующих во Вселенной в небольшом числе копий, то есть на границе между микроскопическим и макроскопическим мирами. Не исключено, что эксперименты с квантовыми компьютерами позволили бы нам понять, имеются ли где-то во Вселенной их копии. Могут обнаружиться реальные наблюдаемые эффекты, порождаемые коррекциями квантовой физики, которые зависят от размера ансамбля.
Все это звучит диковато, но Смолин может нам кое о чем напомнить. Были времена, когда людям трудно было поверить, что Солнце влияет на динамическое поведение планет, потому что это подразумевает непонятное действие на расстоянии. Как я уже упоминал, даже Ньютон не пытался объяснить, как все это работает, ограничиваясь знаменитым ответом
Утешение 6
Безвременная транзакционная интерпретация
Корни транзакционной интерпретации (ТИ) квантовой механики кроются в загадке о природе света, интересовавшей еще Альберта Эйнштейна. Именно размышления о природе света привели Эйнштейна к созданию специальной теории относительности, и одного этого достаточно, чтобы воспринимать вопрос серьезно. К специальной теории великого физика привело осознание того, что из уравнений, описывающих поведение света и всего остального электромагнитного излучения, следует: скорость света одинакова для всех и постоянна (сейчас эту константу записывают как
Уравнения, которые, помимо прочего, гласят, что скорость света одинакова для любого наблюдателя, известны как уравнения Максвелла и названы в честь открывшего их физика XIX столетия. Но уравнения Джеймса Кларка Максвелла обладают еще одним любопытным свойством. Они симметричны во времени. В любой задаче с участием электромагнитного излучения – например, излучения, связанного с движущимся электроном, – у этих уравнений всегда имеется два решения. Одно описывает так называемую запаздывающую волну, которая исходит от источника и движется вперед во времени, чтобы быть поглощенной где-то далеко во внешнем мире. Другое описывает «опережающую» волну, которая исходит от поглотителей где-то там, во внешнем мире, и сходится из будущего к тому, что мы воспринимаем как источник излучения (в данном случае движущийся электрон). Большинство физиков просто не обращает внимания на это «опережающее» решение. Но в 1909 г. Эйнштейн сказал: