Читаем Шипение снарядов полностью

Но все изотопные источники — слабоваты, а самый интенсивный из них, легендарный [57] полоний — уж очень «скоропортящийся» (всего за 138 суток снижает свою активность вдвое), так что держать его в находящемся на хранении заряде было нельзя, приходилось монтировать «свежий» источник незадолго до боевого применения (рис. 3.14). Поэтому на смену изотопным пришли менее опасные (не излучающие в невключенном состоянии), а главное, более интенсивные ускорительные источники — нейтронные генераторы (рис. 3.18). За несколько микросекунд, которые длится формируемый таким источником импульс, «рождается» примерно столько же нейтронов, что и в мощном ядерном реакторе за такое же время.

«Сердце» генератора — вакуумная нейтронная трубка, в которой ускоряются ионы дейтерия (D) и бомбардируют мишень, насыщенную тритием (Т), в результате чего образуются нейтроны (п) и альфа-частицы:

D + Т -> Не4 + n + 17,6 МэВ

По составу частиц, и даже по энергетическому выходу эта реакция идентична синтезу — процессу слияния легких ядер. Синтезом происходящее в трубке в 50 годах считали многие, но позже выяснилось, что это реакция другого класса — «срыва». Когда разогнанный электрическим полем ион дейтерия попадает в ядро трития, то либо протон, либо нейтрон, из которых состоит дейтерий, «увязает» в ней. Если «увязает» протон, то нейтрон «отрывается» и становится свободным. Эти нейтроны разлетаются в разные стороны (в физике говорят: «пространственное распределение — изотропно»), «собрать» и направить их на сборку — сложно, да и особого смысла не имеет: трубка способна выдать столько нейтронов, что и при изотропном их распределении энергетические возможности сборки будут реализованы полностью.

Рис. 3.18Верхний снимок — нейтронные генераторы, которыми комплектуются заряды W-76. Ниже слева — нейтронная трубка. В ее анодном узле 1, при приложении импульсного напряжения, происходит пробой 2 между анодом и поджигающим электродом. Изолятор между этими электродами — насыщенная дейтерием керамика (розового цвета), поэтому при разряде по ее поверхности образуется много ионов дейтерия, которые разлетаются внутри анодного узла, а затем и покидают его. Между анодным узлом и насыщенной тритием мишенью 3 (катодом), прикладывается напряжение более ста тысяч вольт. Выход ионов дейтерия из экранированной сеткой горловины анодного узла должен происходить в момент, когда это напряжение достигает максимума. Нейтронная трубка генерирует до десяти миллионов быстрых нейтронов на каждый джоуль ее энергообеспечения. Источник высокого напряжения — на нижнем левом снимке. Ток от аккумулятора преобразуется в переменный, а напряжение умножается до величины, обеспечивающей формирование ускоряющего ионы дейтерия импульса. Похожий умножитель можно видеть и в числе деталей разобранной авиабомбы В-61, на рис. 3.42. В современных ядерных зарядах системы взведения, инициирования детонаторов, программное устройство и система нейтронного инициирования объединены, как в блоке Мк-3 AFAF (Arming, Fusing And Firing System, правый снимок), обеспечивающем срабатывание ядерного заряда W-68. Энерговыделение этого заряда — 50 кт, но морская ракета «Посейдон» могла доставить к целям 10 боевых блоков с такими зарядами
Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже