Читаем Шипение снарядов полностью

Расширяемая взрывом ВВ 1 труба, прежде чем начать движение по виткам обмотки ВМГ, ударяет по набору 2 железных пластин, в котором системой постоянных магнитов 3 и магнитопроводов 4 создано поле с индукцией около 2 Тл. Удар трубы формирует в железе волну, которая разрушает его доменную структуру, превращая из ферромагнетика в парамагнетик. В парамагнетике реакция на внешнее магнитное поле обусловлена движением электронов на атомных орбитах. Оси моментов электронных токов вращаются (прецессируют) при приложении поля, а, кроме того, упорядочиванию их ориентации мешает тепловое движение атомов. По этим причинам существенное намагничивание невозможно и ранее заключенное в доменах поле освобождается. Оно вытесняется в обмотку 5, где наводит ЭДС, которая и создает начальный ток в ВМГ.

Справа — сборка Е-29 — полностью автономный прототип электромагнитного заряда, включающий ферромагнитный генератор для получения начального импульса тока, усилитель тока (ВМГ) и цилиндрический ударноволновой излучатель. Рядом — элементы магнитопровода ФМГ

После этих усовершенствований внешность ЦУВИ изменилась разительно: теперь это было компактное, вполне подходящее для применения в боеприпасах устройство! Однако «военную карьеру» ЦУВИ сгубили причины технологические. Даже незначительное отклонение от номинальных значений генерируемого ФМГ тока или коэффициента усиления ВМГ вело к весьма существенным неблагоприятным изменениям в режиме излучения ЦУВИ. Разброс же характеристик энергообеспечения был явно неудовлетворительным: дня ФМГ — до 30 % по току, а дня СВМГ (даже для варианта, изготовленного во ВНИИЭФ, где культура производства неизмеримо выше, чем на всех серийных заводах) — около 10 % по коэффициенту усиления. Проконтролировать все эти отклонения заранее, до подрыва, было невозможно. Оптимум генерации РЧЭМИ при ударном сжатии — весьма «острый», и, чтобы обеспечить «попадание» в него, ФМГ и СВМГ нуждались в кропотливой «доводке», сопряженной с огромным расходом времени и средств, а размышления о стоимости их в серийном производстве были подобны ночным кошмарам.

Очень не хотелось терять накопленные почти за десятилетие результаты: были разработаны устройства, где система энергообеспечения была полностью заимствована от ЦУВИ, но вместо монокристалла на оси катушки-лайнера располагался излучатель другого типа (о таких попытках — немного позже).

«Опоздавшая» теория подсказала: при повышении мощности ударной волны, соответствующая оптимальному режиму излучения начальная индукция магнитного поля снижается. Значит, если форсировать возрастание давления, то для существенного излучения могли оказаться достаточными и значения начальной индукции, создаваемые системой постоянных магнитов, что предельно упростило бы устройство. Для случая максимально возможного роста давления — при сферической кумуляции — оценки показали, что диаметр шарового заряда должен быть менее дециметра. Требовалась сферическая детонационная разводка соответствующего размера — ее надо было создавать заново, потому что готовые, для ядерных зарядов, были больше.

09 сентября 1993 г. была впервые испытана сборка Е-35 — ударно-волновой излучатель, сферический (УВИС, рис. 4.34.)

… После срабатывания детонатора со скоростью около 8 км/с огоньки детонации, многократно разветвляясь, разбегаются по каналам, одновременно ныряют в десятки отверстий и инициируют сферическую детонацию. Достигнув поверхности шара из иодида цезия, волна детонации формирует в нем ударную волну, причем, поскольку импеданс монокристалла больше, чем газов взрыва, давление на его поверхности увеличивается, превышая миллион атмосфер. Сферическая ударная волна мчится к центру со скоростью более 10 км/с, сжимая магнитное поле и оставляя за собой уже не монокристалл, а проводящую как металл, жидкую мешанину из плазмы йода и цезия.

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука