Читаем Шипение снарядов полностью

в — осциллограмма производной тока в контуре катушки после удара по ней лайнера. Колебания тока носят довольно причудливый, не похожий на косинусоиду, характер, а это значит, что в них велика доля «быстрых» гармоник

Работа с мертвой точки сдвинулась только тогда, когда отказались от паллиативных решений, сделав все «по-новому».

Рис. 4.45

В грозовых облаках имеются области концентрации зарядов разных знаков и можно «провоцировать» внутренние разряды, «добавляя» к и без того значительной напряженности внутреннего электрического поля внешнюю — от электрической составляющей РЧЭМИ. Для этого в облако стреляют ракетой и подрывают внутри него ЭМБП, предотвращая тем самым опасные разряды между облаком и землей

… Электрические заряды в диэлектриках связаны и не могут двигаться свободно, как в металлах. Диэлектрики способны накапливать энергию: если «закоротить» заряженный конденсатор (удалив, таким образом, свободные заряды с металлических обкладок), а затем снять закоротку, спустя небольшое время конденсатор снова окажется частично заряжен (возможно, некоторые читатели убедились в этом, работая с установкой «водяной кумуляции»). Причина в том, что изолятор при зарядке был поляризован внешним полем. При закорачивании сразу исчезло поле, а направленная поляризация — частично сохранилась. Возвращение поляризации к равновесному значению вызывает протекание тока смещения, вновь заряжающего конденсатор.

Структурные элементы некоторых видов диэлектриков (сегнето-электриков, пьезоэлектриков) обладают собственными электрическими дипольными моментами. Сегнетоэлектрики неограниченно долго сохраняют остаточную поляризацию, а деполяризуются при нагревании до точки Кюри (для большинства из них — около 100 градусов Цельсия). Нагревает любое вещество ударная волна, но сегнетоэлектрики «капризны»: слишком мощная волна может индуцировать в них столь сильное поле, что возникнет пробой и ток смещения не будет заряжать металлические обкладки, между которыми расположен диэлектрик. Но пусть все обошлось без пробоя, тогда пьезоэлемент — такой же, как в зажигалке, но значительно больший по размерам — зарядит конденсатор генератора частоты.

Как и в ядерных боеприпасах, в крупнокалиберных ЭМБП целесообразно размещать несколько небольших излучателей, рассеиваемых перед групповым подрывом — тогда цели поражаются на большей площади. Для кассетных элементов был разработан витковый генератор частоты (ВГЧ, рис. 4.46). И для ВГЧ была создана полуэмпирическая модель, опирающаяся на результаты токовых измерений.





Рис. 4.46

Вверху — витковый генератор частоты (ВГЧ) и его схема. Обмотка состоит из одного, и то неполного витка 1. Короткая труба 2 смещена в сторону пьезоэлементов 3, поэтому сначала она, расширяясь под действием взрыва, «выбивает» из них ток, заряжая конденсатор 4, а уж затем замыкает контур, генерирующий излучение. Средний ряд — осциллограммы производной тока: а) в ВГЧ, электроды которого соединены с конденсатором; б) в том же (не излучающем) устройстве, электроды которого соединены не конденсатором, а «закороткой» из провода. Внизу — 125-миллиметровая реактивная граната с кассетной боевой частью, содержащей витковые генераторы частоты

Перейти на страницу:

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли
Ударные корабли Часть 1 Авианесущие корабли. Ракетно-артиллерийские корабли

Справочник содержит сведения о корабельном составе Р'РњР¤ СССР по состоянию на декабрь 1991 г. Однако в нем прослежена СЃСѓРґСЊР±Р° кораблей советского флота до 2001 г. Приведены данные по находившимся в строю, строившимся и проектировавшимся боевым кораблям, РёС… названиям, заводским номерам, датам закладки, СЃРїСѓСЃРєР°, вступления в строй, вывода из боевого состава флота, модернизаций или переоборудования, предприятиям (заводам, фирмам)-строителям и фирмам-проектантам. Рассказано об особенностях проектов, проектировании, строительстве, ремонтах и модернизациях, наиболее характерных авариях и важных этапах активной службы. Представлены схемы внешнего вида, продольные разрезы всех проектов и РёС… модификаций, многочисленные фотографии. Справочник издается в четырех томах: С'. I. Подводные лодки (в РґРІСѓС… томах); С'. Р

Юрий Валентинович Апальков

Технические науки / Образование и наука