Рассмотрим импульсный режим
Если на вход подан импульс тока с максимальным значением, то транзистор переходит в область насыщения. Получается импульс тока коллектора с максимальным значением. Иногда его называют током насыщения. В этом режиме транзистор выполняет роль замкнутого ключа и почти все напряжение источника падает на резистор, а на транзисторе имеется лишь очень небольшое остаточное напряжение порядка десятка долей вольта, обычно называемое напряжением насыщения.
Если импульс входного тока будет меньше максимального значения, то импульс тока коллектора тоже уменьшится. Но зато увеличение импульса тока базы сверх максимального значения уже не дает возрастания импульса выходного тока.
Импульсный режим характеризуется также коэффициентом усиления по току, который в отличие от в определяется не через приращение токов, а как отношение токов, соответствующих режиму насыщения.
Иначе говоря, в является параметром, характеризующим усиление малых сигналов, а коэффициент усиления по току относится к усилению больших сигналов, в частности импульсов, и по величине несколько отличается от в.
Параметром импульсного режима транзистора служит также его сопротивление насыщения. Величина сопротивления насыщения у транзисторов, предназначенных для импульсной работы, обычно бывает порядка единиц, иногда десятков Ом.
Аналогично рассмотренной схеме с общим эмиттером работает в импульсном режиме и схема с общей базой.
Если длительность входного импульса во много раз больше времени переходных процессов накопления и рассасывания зарядов в базе транзистора, то импульс выходного тока будет иметь почти такую же длительность и форму, как входной импульс. Но при коротких импульсах может наблюдаться значительное искажение формы импульса выходного тока и увеличение его длительности.
Постепенное увеличение тока связано с процессом накопления носителей в базе. Кроме того, носители, инжектированные в базу в начале импульса входного тока, имеют разные скорости своего диффузионного движения и не все сразу достигают коллектора. После окончания входного импульса за счет процесса рассасывания заряда, накопившегося в базе, ток продолжается некоторое время, а затем постепенно спадает в течение времени спада. Следовательно, замедляется процесс включения и выключения коллекторной цепи, затягивается время, в течение которого находится в замкнутом состоянии. Иначе говоря, за счет инерционности процессов накопления и рассасывания заряда в базе транзистор не может осуществлять достаточно быстрое включение и выключение, т. е. не обеспечивает достаточное быстродействие ключевого режима.
21. ОСНОВНЫЕ ТИПЫ ТРАНЗИСТОРОВ
Существующие типы транзисторов классифицируются по методу изготовления, применяемым материалам, особенностям работы, назначению, мощности, диапазону рабочих частот и по другим признакам. Точечные транзисторы, исторически бывшие первыми, теперь не применяются. Рассмотрим плоскостные транзисторы. В качестве полупроводников для транзисторов, выпускаемых промышленностью, применяются германий и кремний. По предельной мощности, выделяемой в коллекторном переходе, различают транзисторы малой, средней и большой мощности. В зависимости от предельной рабочей частоты транзисторы бывают низкочастотные (до 3 МГц), средней частоты (от 3 до 30 МГц) и высокочастотные (выше 30 МГц).
У подавляющего большинства транзисторов основным физическим процессом является инжекция носителей, но имеется группа транзисторов, работающих без инжекции. К ним, в частности, относятся полевые (канальные) транзисторы. Транзисторы с инжекцией могут иметь различное число p-n-пере-ходов.
Исключительно широкое распространение получили биполярные транзисторы, имеющие два p-n-пере-хода. Различают два вида таких транзисторов: дрейфовые, в которых перенос неосновных носителей заряда через базу осуществляется главным образом посредством дрейфа, т. е. под действием ускоряющего электрического поля, и бездрейфовые, в которых такой перенос осуществляется главным образом посредством диффузии.
Бездрейфовые транзисторы имеют во всем объеме базы одну и ту же концентрацию примеси. Вследствие этого в базе не возникает электрического поля и но– сители в ней совершают диффузионное движение от эмиттера к коллектору. Скорость такого движения меньше скорости дрейфа носителей в ускоряющем поле. Следовательно, бездрейфовые транзисторы предназначены для более низких частот, нежели дрейфовые.