Читаем Шпаргалка по общей электронике и электротехнике полностью

При рассмотрении работы ламп для упрощения считают, что ток в цепи какого-либо электрода образуется благодаря попаданию на этот электрод потока электронов, летящих внутри лампы. Такой поток электронов называется конвекционным током. Ток во внешней цепи любого электрода лампы представляет собой наведенный (индукционный) ток.

В электронных лампах роль движущегося индуктирующего заряда играет поток электронов, летящих от одного электрода к другому, т. е. конвекционный ток. Конвекционные токи внутри лампы всегда возбуждают наведенные токи во внешних проводах, соединенных с электродами лампы. Наведенный ток увеличивается при увеличении количества и скорости летящих электронов, а также при уменьшении расстояния между ними и данным электродом.

С помощью наведенного тока можно лучше понять преобразование энергии, происходящее при движении электронов в электрическом поле. Поток летящих внутри лампы электронов создает в цепи аккумуляторной батареи наведенный ток, направление которого совпадает с направлением конвекционного тока. В случае ускоряющего поля наведенный ток, проходящий через батарею, будет для нее разрядным током. Батарея разряжается, т. е. расходует свою энергию, которая с помощью электрического поля передается летящим электронам и увеличивает их кинетическую энергию. В тормозящем поле электроны движутся за счет своих начальных энергий. В этом случае наведенный ток, наоборот, будет для батареи зарядным током, т. е. электроны в тормозящем поле отдают свою энергию, которая накапливается в батарее.

<p>48. ВХОДНОЕ СОПРОТИВЛЕНИЕ И ПОТЕРИ ЭНЕРГИИ В ЛАМПАХ</p>

Усилительный каскад характеризуется коэффициентом усиления по мощности К, показывающим, во сколько раз усиливается мощность: К= Рвых / Рвх, где Рвых-полезная мощность, отдаваемая лампой, а Рвх – мощность, подводимая ко входу лампы.

При малом значении входного сопротивления мощность может настолько возрасти, что коэффициент станет равен единице или будет еще меньше. Очевидно, нецелесообразно применять усилители, дающие усиление мощности меньше чем в 2–3 раза. С переходом на СВЧ входное сопротивление обычных ламп резко уменьшается и усиление мощности получается малым или даже отсутствует. Уменьшение входного сопротивления ламп на СВЧ объясняется возникновением наведенных токов в цепи сетки.

В зависимости от соотношения времени пролета и периода колебаний, соотношения расстояний участков «катод – сетка» и «сетка – анод» величины напряжений на электродах процессы в триоде могут происходить различно, но все же в любом случае из-за проявления инерции электронов на СВЧ получаются большие наведенные токи в цепи сетки, приводящие к резкому уменьшению входного сопротивления.

Самое неприятное следствие инерции электронных процессов состоит в появлении активной составляющей сеточного тока. Оно обусловливает наличие у лампы входного активного сопротивления, которое уменьшается с повышением частоты и снижает коэффициент усиления по мощности. Активное входное сопротивление лампы характеризует потерю энергии источника колебаний, включенного в цепь сетки. В данном случае эта энергия переносится активной составляющей наведенного тока от источника колебаний к электрическому полю и передается электронам, которые увеличивают свою кинетическую энергию и расходуют ее на нагрев анода. Если же 1 лампа работает на более низких частотах и временем пролета можно пренебречь, то при напряжении сетки токи будут иметь такую же прямоугольную форму и длительность, как и напряжение, и они не будут сдвинуты по времени относительно друг друга. Поскольку эти токи равны и противоположны по направлению, то суммарный сеточный ток равен нулю. Следовательно, никакого расхода энергии от источника колебаний в этом случае нет.

При синусоидальном переменном напряжении все процессы происходят сложнее, но на СВЧ обязательно возникнет активный наведенный ток в цепи сетки, на создание которого расходуется энергия источника колебаний. Эта энергия в конечном итоге теряется на дополнительный нагрев анода и катода конвекционным током. Действительно, положительная полуволна сеточного напряжения, ускоряя электроны, летящие от катода, дает им дополнительную энергию, а во время отрицательного полупериода сетки отталкивает электроны, движущиеся к аноду, и они тоже получают дополнительную энергию. В результате электроны бомбардируют с большей силой анод, который дополнительно нагревается. Кроме того, электроны, не пролетевшие сквозь сетку, а повернувшие обратно на катод, также отталкиваются сеткой во время отрицательного полупериода и получают еще дополнительную энергию. Эти электроны бомбардируют дополнительный катод и вызывают его дополнительный нагрев. Таким образом, источник колебаний в течение всего периода отдает энергию электронам, а они расходуют ее на бомбардировку анода и катода.

Потери энергии в лампах, работающих на СВЧ, происходят не только из-за инерции электронов, но и по ряду других причин.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки