После изготовления головки металлоискателя впаяйте конденсатор С5, переменный резистор R27 установите в среднее положение, а переменный резистор R28 настройте на минимум выходного сигнала. При этом по одну сторону среднего положения переменный резистор R27 обеспечивает распознавание стальных предметов, а по другую сторону — предметов из цветного металла. Следует иметь в виду, что при каждом изменении номинального значения сопротивления переменного резистора R27 необходимо проводить повторную настройку устройства.
На практике металлоискатель представляет собой легкое, хорошо сбалансированное, чувствительное устройство. В течение первых нескольких минут после включения устройства может иметь место разбаланс нулевого уровня, однако через некоторое время он исчезнет или станет незначительным.
В последнее время участились случаи краж радиоактивных элементов с целью переправки за границу и продажи. Обнаружить этот смертоносный груз, даже если он хорошо спрятан в тайнике, помогают специальные приборы, именуемые детекторами, или индикаторами, радиоактивного излучения.
Ниже рассмотрим несколько простых схем таких приборов, пригодных для быстрого повторения и использования.
Индикатор бета- и гамма-излучения
На рис. 4.21 показана схема простою индикатора, фиксирующего даже слабые бета- и гамма-излучения. Датчиком (VL1) служит счетчик Гейгера-Мюллера типа СТС-5 отечественного производства, выпускаемый уже более тридцати лет.
Рис. 4.21.
Он имеет вид металлического цилиндра длиной около 113 и диаметром 12 мм.
Его рабочее напряжение 400 В. Из зарубежных датчиков можно использовать ZP1400, ZP1310 или ZP1320 фирмы Philips.
Прибор питается от одного гальванического элемента напряжением 1,5 В и потребляет ток не более 10 мА. Напряжение -12 В для питания усилителя и высокое напряжение для питания датчика получают от преобразователя на транзисторе VT1. Трансформатор преобразователя Т1 намотан на броневом магнитопроводе диаметром около 25 мм. Обмотка 1–2 имеет 45 витков провода диаметром 0,25 мм, 3–4 — 15 витков того же провода, а 5–6 — 550 витков провода диаметром 0.1 мм. Начала обмоток на схеме отмечены точками.
Преобразователь представляет совой блокинг-генератор. Возникающие на обмотке 5–6 трансформатора Т1 импульсы высокого напряжения выпрямляет высокочастотный диод VD2. Обычные выпрямительные диоды здесь непригодны, так как импульсы слишком коротки, а частота их повторения слишком высока.
Пока излучения нет, на входе усилителя, выполненного на транзисторах VT2 и VT3, напряжение отсутствует и транзисторы заперты. При попадании на датчик бета- или гамма-частиц газ, которым он заполнен, ионизируется и на выходе формируется импульс, который возбуждает усилитель, и из громкоговорителя (телефонного капсюля) BF1 слышен шелчок, светодиод HL1 при этом вспыхивает.
Вне зоны облучения щелчки и вспышки светодиода повторяются через 1–2 с.
Это реакция датчика на космическое излучение и естественный фон. Если приблизить датчик к излучающему предмету (старым часам со светящимся циферблатом или шкале авиационного прибора времен войны), щелчки участятся и, наконец, сольются в сплошной треск, а светодиод будет светиться непрерывно.
Таким образом можно судить о частоте попадания частиц на датчик, а следовательно, об интенсивности излучения.
В приборе есть и стрелочный индикатор. Переменное напряжение, снимаемое с телефонного капсюля, через конденсатор С5 поступает на двухполупериодный выпрямитель на германиевых диодах VD3, VD4 (они могут быть любого типа).
Выпрямленное напряжение после сглаживания конденсатором С6 через переменный резистор R5 подается на микроамперметр (РА1). Сопротивление резистора устанавливают таким, чтобы при сильном излучении стрелка микроамперметра не зашкаливала, а при слабом — заметно отклонялась. При необходимости прибор можно проградуировать, сравнивая его показания с измерителем излучения промышленного изготовления. Прибор собран на печатной плате, помещенной в коробку размерами 150x90x40 мм. Датчик размещен в отдельном корпусе и соединен с прибором кабелем с разъемом.