Читаем Штурм абсолютного нуля полностью

Читатель уже знает, что гелий — газ редкий и дорогой. Конденсация его в жидкое состояние требует немалых затрат. Жидкий гелий быстро нагревается и выкипает, если его тщательно не изолировать в специальной многоступенчатой емкости. Обычно в сверхпроводящих устройствах оболочка с жидким гелием в свою очередь заключается в оболочку, где циркулирует жидкий азот. Это тоже обходится недешево и создает немалые технические трудности.

Применение сверхпроводников, охлаждаемых жидким гелием, экономически и технически оправдано только при решении особо сложных проблем, где обычные средства оказываются бессильными.

Может ли существовать сверхпроводимость если не при комнатной температуре, то хотя бы при температурах, достижимых с помощью жидкого водорода или жидкого азота — веществ гораздо более доступных и менее «привередливых», чем жидкий гелий? Такой вопрос уже давно поставили перед собой ученые.

В науке возникла проблема высокотемпературной сверхпроводимости.

В обыденной жизни высокими температурами считают те, которые выше комнатной. В мире сверхпроводимости высокими считаются температуры даже значительно ниже нуля градусов по Цельсию.

Вполне естественно стремление исследователей получить сверхпроводники с возможно большей критической температурой.

Напоминаем, что первый сверхпроводник — ртуть с критической температурой 4,2К — был открыт в 1911 году. Через два года максимальная критическая температура повысилась на ЗК. Был открыт сверхпроводящий свинец с критической температурой 7,2К. А чтобы повысить максимальную критическую температуру еще на 2К, понадобилось 17 лет. В 1930 году был открыт сверхпроводящий ниобий с критической температурой 9,2К.

Относительно большого повышения максимальной критической температуры удалось добиться в 50–х годах с появлением сверхпроводящих сплавов. А в 1973 году промелькнула надежда освободиться из плена гелиевых температур, то есть температур, достижимых с помощью жидкого гелия. Был получен сверхпроводящий сплав ниобий — германий с критической температурой 23,4К.

Температура кипения водорода 20,4К. Значит, принципиально возможно охладить сплав ниобий- германий с помощью жидкого водорода. Но работать со сверхпроводниками в области температур, близких к критическим, невыгодно, а подчас невозможно из-за снижения критического магнитного поля и критического тока. Ведь при критической температуре критическое магнитное поле и критический ток равны нулю и увеличиваются по мере отхода от критической в сторону более низких температур.

Установленный в 1973 году рекорд критической температуры 23,4 К в течение долгих лет оставался непревзойденным. У некоторых физиков этот период получил название «смутного времени сверхпроводимости».

В чем причина такого застоя?

Теоретические расчеты показывают, что сверхпроводимость, возникающая благодаря межэлектронному притяжению в результате взаимодействия электронов с кристаллической решеткой металла, принципиально осуществима при критической температуре до 25–30 К.

В то время исследователи уже приблизились к этому пределу, и надо было изыскивать другие возможности повышения критической температуры.

«А может быть, стоит опять прибегнуть к помощи… лягушки?» — подумали ученые.

Ведь, препарируя лягушку, итальянский профессор Луиджи Гальвани пришел к мысли о существовании животного электричества.

Можно без преувеличения сказать: именно с опытов Гальвани началась история современной электротехники.

Вот что сказал по этому поводу во вступительном слове на X Международной конференции по физике низких температур академик П. Л. Капица:

«Мы не должны забывать, что в природе, в частности в живых организмах, металл не используется для передачи электрических импульсов. Наши нервы, по которым проходят электрические импульсы, имеют не металлические свойства, и значит, что в природе существует механизм, который может передавать электрический импульс по среде, имеющей полимерную структуру».

Теоретическая разработка проблемы высокотемпературной сверхпроводимости началась в 1964 году с появлением работ американского физика

В. Литтла и крупного советского физика академика Виталия Лазаревича Гинзбурга.

Теоретическая модель Литтла основана на использовании полимеров. Напомним, что полимеры — это вещества, состоящие из макромолекул, то есть молекул, содержащих большое количество (вплоть до десятков и тысяч) валентно связанных атомов.

Эта модель представляет собой полимер с главной осью, вдоль которой перемещаются электроны проводимости. От главной оси отходят боковые ветви, причем содержащиеся в них электроны способны совершать колебательные движения.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже