Читаем Штурм абсолютного нуля полностью

Прошло всего несколько лет после открытия изотопического эффекта, и в 1957 году американские исследователи Дж. Бардин, Л. Н. Купер и Дж. Р. Шриффер (этот триумвират принято сокращенно называть БКШ — по первым буквам их фамилий) и советский ученый Николай Николаевич Боголюбов создали теорию, объясняющую явления, происходящие в мире сверхпроводимости.

На «живом серебре» (такое образное название носит ртуть на украинском и немецком языках) была впервые открыта сверхпроводимость. Именно на ртути был обнаружен изотопический эффект, создавший важную предпосылку для разработки современной теории сверхпроводимости.

На страницах этой книги мы лишены возможности пользоваться сложными математическими уравнениями, описывающими законы квантовой механики. Поэтому дается лишь упрощенное представление о природе сверхпроводимости.

В обычном проводнике каждый электрон ведет себя как индивидуалист. Между электронами проводимости отсутствует, образно говоря, чувство локтя. Более того, по закону Кулона электрон отталкивает соседа.

В сверхпроводниках происходит объединение электронов в пары. Участники таких пар притягиваются друг к другу.

У читателя, твердо усвоившего из элементарного курса физики, что между электронами существуют кулоновские силы отталкивания, это последнее утверждение не может не вызвать недоумения.

Но возможность электронов при определенных услових притягиваться друг к другу не противоречит законам физики.

Свободный электрон, двигаясь через кристаллическую решетку, притягивает к себе положительные ионы металла, вызывая тем самым деформацию решетки. Это приводит к появлению в решетке области избыточного положительного заряда, образующейся благодаря высокой плотности ионов там, где решетка деформировалась.

Второй электрон притягивается избытком положительного заряда и тем самым косвенно взаимодействует с первым электроном (то есть притягивается к нему).

При достаточно низких температурах у ряда металлов такое притяжение преобладает над кулоновским отталкиванием. Тогда электроны могут объединяться попарно.

Такие пары электронов получили название куперовских пар, по имени Л. Купера, одного из создателей теории сверхпроводимости.

Невидимка находит напарника. I — жидкий гелий. А — в обычном проводнике электроны перемещаются в одиночку, каждый из них отталкивает соседа. Б — в сверхпроводнике электроны объединяются в пары. Строй куперовских пар свободно перемещается по кристаллу. Электрическое сопротивление равно нулю.

Казалось, электрону легче всего выбрать себе напарника из ближайших соседей. Но это не так. Напарник электрона должен находиться от него на относительно большом расстоянии, с тем чтобы ку- лоновская сила отталкивания была достаточно мала.

Электроны куперовской пары находятся друг от друга на расстоянии один микрометр. В обыденной жизни это, разумеется, мизерная величина. Но не забывайте, что мы с вами сейчас находимся в микромире, где счет идет на доли нанометра.

Электрон должен «чувствовать» своего напарника, находящегося от него на расстоянии, в десятки тысяч раз превышающем расстояние до его ближайшего соседа.

Если мы мысленно построим шар радиусом в один микрометр, в центре которого один из электронов куперовской пары, то его партнер должен находиться где‑то на поверхности шара. Между тем внутри этого шара находятся мириады электронов.

Каким‑то удивительным для нас, жителей макромира, способом электрон в таких условиях выбирает себе напарника. И не ошибается в своем выборе! Расчеты показывают, что образование сформированных таким образом куперозских пар энергетически наиболее выгодно.

Спаривание двух электронов возникает только тогда, когда большое число других электронов находится в этом же состоянии.

Такой коллектив электронов в кристалле можно уподобить строю солдат, совершающих марш по местности, пересеченной завалами и рытвинами. Здесь каждый подстраховывает своего товарища, не давая ему оступиться или попасть в яму.

Точно так же «строй» куперовских пар легко «марширует» по сверхпроводнику. Электрическое сопротивление исчезает.

Однако с ростом температуры интенсивность тепловых колебаний увеличивается, и при температуре выше критической куперовские пары распадаются. Сверхпроводник превращается в обычный проводник.

В сверхпроводнике, при температуре отличной от абсолютного нуля, не все электроны объединяются в куперовские пары. Наряду со спаренными электронами там имеются и обычные электроны, которые могут рассеиваться и испытывать сопротивление так же, как электроны проводимости в нормальном кристалле.

Количество куперовских пар уменьшается при повышении температуры и приближении ее к критической. Наоборот, при абсолютном нуле все электроны должны образовать пары.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг