Разумеется, эти предсказания были в корне неверными, Лаплас посвятил значительную часть своей жизни тому, чтобы более точно определить орбиты этих планет{567}
. Уточнения, которые внес Лаплас, были основаны на вероятностных заключениях{568}, а не на результатах более точных измерений, поскольку инструменты того времени (например, телескопы) были достаточно грубыми. Лаплас начал рассматривать вероятность как срединную точку между невежеством и знанием. Ему казалось очевидным, что для достижения научного прогресса важно уделять вопросам вероятности значительно больше внимания{569}.Таким образом, Байес и Лаплас уже в XVIII в. отлично понимали, что существует некая тонкая связь между вероятностью, предсказанием и научным прогрессом. И это было еще в тот период, когда человечество только начало сталкиваться с взрывообразным ростом объемов информации, ставшим возможным благодаря изобретению печатного пресса несколькими столетиями ранее и способствовавшим развитию устойчивого научного, технического и экономического прогресса. Эта связь крайне важна – как для предсказания орбит планет, так и для угадывания победителя в матче с участием Lakers. Как мы увидим ниже, наука зашла в тупик позже, когда в XX в. начала доминировать иная статистическая парадигма, лишившая предсказание былой значимости и пытавшаяся рассматривать неопределенность как результат несовершенства наших измерений, а не как ошибку наших суждений.
Простая математика теоремы Байеса
Если философская подоплека теоремы Байеса удивительно глубока, то ее математика потрясающе проста. В своей базовой форме это всего лишь алгебраическое выражение с тремя известными переменными и одной неизвестной. Однако эта простая формула способна привести к инсайтам в предсказаниях.
Теорема Байеса прямо связана с условной вероятностью. Иными словами, она позволяет рассчитать вероятность какой-либо теории или гипотезы,
• Прежде всего вы должны оценить вероятность появления белья
Для решения этой проблемы давайте предположим, что вы женщина, а ваш партнер – мужчина, а предметом спора выступает пара трусиков. Если он вам изменяет, то несложно представить себе, как в ваш гардероб могли попасть чужие трусики. Но, даже если (или даже особенно в том случае если) он вам изменяет, вы можете ожидать, что он ведет себя достаточно осторожно. Давайте скажем, что вероятность появления трусиков при условии того, что он вас обманывает, составляет 50 %.
• Во-вторых, вы должны оценить вероятность появления белья
• Третье и самое важное, что вам нужно, – это то, что байесовцы называют
Если вы произвели оценку всех этих значений, то можете применить теорему Байеса для оценки