Читаем Симфония № 6. Углерод и эволюция почти всего полностью

Белки же, которые управляют клетками, наоборот, представляют собой большие углеродсодержащие молекулы, которые зависят от тонко контролируемого движения электронов. Их атомы упорядочены таким образом, что электрон, слабо удерживаемый несколькими атомами, часто кластером, содержащим атом металла (к примеру, железа, никеля или меди), легко может быть отдан. Подобную реакцию вызовет незначительное изменение условий, окружающих молекулу. Первая химическая реакция может вызвать следующую, а потом и еще одну — быстрый каскад смещений электронов, точно контролируемых геометрией углеродсодержащих белков. Такие цепи реакций необходимы для построения новых молекул, когда клетки растут и размножаются.

Углерод обеспечивает бесподобную молекулярную гибкость, поскольку играет много ролей. Шестой элемент принимает электроны, отдает электроны или делится ими, связываясь таким образом с десятками разных химических элементов в молекулярные цепочки, кольца и ветви с одиночными, двойными или тройными связями. Он образует столь небольшие молекулы, как CO, CO2 и CH4, и при этом является составной частью гигантских молекулярных структур буквально с миллиардами атомов.

С учетом этой уникальной его многогранности нет ничего удивительного в том, что 90% лабораторных химических исследований связаны с углеродом. Посмотрите на набор дисциплин, преподаваемых на химическом или биологическом факультетах любого университета, и вас поразит непропорциональная важность углерода: органическая химия, химия полимеров, фармацевтическая химия, биохимия, молекулярная генетика, сельскохозяйственная химия, пищевая химия и химия окружающей среды. Семинары проводятся по таким темам, как компьютеризированная разработка лекарств, особым образом свернутые структуры белков, углеродсодержащие наноматериалы, микроскопический состав почв и сложная химия вина. Все эти темы плюс еще десятки подобных основаны на химическом богатстве углерода.

<p><strong>Стратегии: последовательные шаги к жизни</strong></p>

Популярное состязание ученых в поисках происхождения жизни — вообразить его «сценарий», тщательно продуманную, с широким охватом, зачастую не поддающуюся проверке историю химических и физических обстоятельств, при которых из безжизненной геохимической среды появился живой мир. Каждый из этих воображаемых сценариев основан на каком-то ранее не учтенном физическом или химическом явлении — им может быть особенный минеральный шаблон вроде слюды или пирита, или удивительная физическая среда типа несущейся по ветру высоко в атмосфере струи аэрозоля, или сульфидный «пузырек» рядом с жерлом вулкана глубоко на океаническом дне.

Баллы (и известность) получают за новизну. Британский минералог Грэм Кернс-Смит, творчески мыслящий ученый, захватывающе читавший лекции и увлекательно писавший, привлек большое внимание своей гипотезой глиняного мира{152}. Он утверждал, что древний фрагмент глины (повсеместно распространенного скользкого минерального компонента грязи) начал самовоспроизводиться, переносить информацию и эволюционировать, чтобы стать в конечном счете шаблоном для биомолекул современной биологии. Несмотря на то что механизмы сего процесса были обрисованы довольно смутно (и, вероятно, они недоказуемы с кристаллохимической точки зрения), этот сценарий захватил воображение людей, хотя и был просто вариацией древнееврейского мифа о Големе — существе, созданном из глины.

На конференциях и в публикациях, посвященных происхождению жизни, постоянно фигурируют концептуальные идеи вроде «мира ПАУ[41]», «мира слюды», «мира боратов»; каждая такая история фокусируется на новой причуде природы, каждая зависит от некоего особого обстоятельства, которое способствовало бы сложному прыжку от неживых химических веществ к живой планете.

Каким бы разумным ни показался на первый взгляд любой из предложенных сценариев, каким бы заманчивым ни был рекламный ход или страстной — презентация, мне все они кажутся немного придушенными, поскольку в них заложено отрицание удивительного богатства природных возможностей. Исследование происхождения жизни в каком-то смысле аналогично игре «Двадцать вопросов», в которой вы пытаетесь установить личность загаданного человека, последовательно задавая все более конкретные вопросы, подразумевающие ответ «да» или «нет». Понимающий стратегию игрок всегда начинает с самых общих вопросов, выясняя, жив ли загаданный человек, мужчина это или женщина и т.д.

Перейти на страницу:

Похожие книги

100 великих тайн Земли
100 великих тайн Земли

Какой была наша планета в далеком прошлом? Как появились современные материки? Как возникли разнообразные ландшафты Земли? Что скрывается в недрах планеты? Научимся ли мы когда-нибудь предсказывать стихийные бедствия? Узнаем ли точные сроки землетрясений, извержений вулканов, прихода цунами или падения метеоритов? Что нас ждет в глубинах Мирового океана? Что принесет его промышленное освоение? Что произойдет на Земле в ближайшие десятилетия, глобальное потепление или похолодание? К чему нам готовиться: к тому, что растает Арктика, или к тому, что в средних широтах воцарятся арктические холода? И виноват ли в происходящих изменениях климата человек? Как сказывается наша промышленная деятельность на облике планеты? Губим ли мы ее уникальные ландшафты или спасаем их? Велики ли запасы ее полезных ископаемых? Или скоро мы останемся без всего, беспечно растратив богатства, казавшиеся вечными?Вот лишь некоторые вопросы, на которые автор вместе с читателями пытается найти ответ. Но многие из этих проблем пока еще не решены наукой. А ведь от этих загадок зависит наша жизнь на Земле!

Александр Викторович Волков

Геология и география