Цепочка ДНК переплетается и завязывается в узлы по нескольким причинам: это и ее длина, и постоянная активность, и, вместе с тем, изолированность от других цепочек. Ученые успешно проводили симуляции ДНК внутри активного клеточного ядра: помещали в коробку длинную тонкую веревку и затем трясли ящик. Концы веревки причудливейшим образом переплетались, за несколько секунд образуя удивительно сложные узлы, имевшие до 11 пересечений (вы легко сможете это себе представить, если когда-нибудь роняли в сумку наушники и через некоторое время пытались достать их оттуда). Подобные клубки в ДНК могут привести к летальному исходу, так как клеточные механизмы, отвечающие за копирование и транскрибирование ДНК, должны делать это спокойно и постепенно; узлы же этот процесс срывают. К сожалению, смертоносные узлы и переплетения могут создаваться и во время самих процессов копирования и транскрибирования ДНК. Копирование ДНК требует разделения спирали на две нити, но разделить две тесно переплетенные нити такой спирали не проще, чем плотно сплетенный волосяной жгут. Более того, когда клетки начинают копировать ДНК, длинные липкие свободно раскачивающиеся нити могут переплестись между собой. Если не произойдет хорошего рывка и нити не выпутаются, это сплетение окажется губительным – произойдет своеобразное самоубийство клетки.
Кроме собственно узлов, ДНК может оказаться и в других топологических переделках. Линии могут сцепиться друг с другом, как соседние звенья цепи. Они могут очень плотно перепутаться, испытав такое усилие, которое мы прилагаем к тряпке, когда выжимаем ее, или же к клейму, прижимаемому к предплечью. Они могут свернуться кольцами туже, чем гремучие змеи. И вот как раз последняя из конфигураций – кольца – возвращает нас к Льюису Кэрроллу и Черепахе Квази. Специалисты по теории узлов определили некоторые кольца как «корчи», а весь процесс образования колец сравнили с извиванием от боли, как если бы нити ДНК переплетались в агонии. Может, Черепаха Квази, как считают некоторые современные исследователи, хитро ссылается на теорию узлов с ее «извивами»?
С одной стороны, Кэрролл работал в престижном университете как раз в то время, когда Кельвин и Тэт начали изучать теорию узлов.
Теория узлов была не единственной математической проблемой, появлявшейся во время исследований ДНК. Для этого также использовались диаграммы Венна и принцип неопределенности Гейзенберга. Архитектура ДНК обнаруживает следы «золотого сечения» – отношения длины к ширине, которое наблюдается в классических зданиях, таких, как Парфенон. Геометры-энтузиасты скручивали ДНК лентой Мебиуса, конструировали из нее все пять правильных многогранников. Специалистам по клеточной биологии теперь известно, что, даже просто для того, чтобы закрепиться в ядре, длинная волокнистая ДНК должна сложиться и разложиться во фрактальную модель: петли внутри петель внутри петель – при этом практические невозможно определить, какой шкалой – нано-, микро-, миллиметровой – вы сейчас пользуетесь. Наиболее же невероятное достижение покорилось группе японских ученых, которые, присвоив комбинациям А, Ц, Г и Т определенные буквенные и цифровые значения, смогли внедрить закодированную надпись «E = mc2
1905!» в ДНК обычной почвенной бактерии.ДНК особенно близко связана с весьма оригинальным разделом математики под названием «закон Ципфа», феноменом, который впервые описал не математик, а лингвист. Джордж Кингсли Ципф происходил из солидного немецкого рода (его семья управляла пивоварнями в Германии) и в конце концов добился должности профессора немецкого языка в Гарвардском университете. Несмотря на свою любовь к языку, Ципф не был библиофилом и, в отличие от своих коллег, проживал за Бостоном на семиакровой ферме с виноградником, свинарником и курятником, хотя особо хозяйством и не занимался. В дневное время он в основном отсыпался, так как большинство ночей проводил, штудируя библиотечные книги и изучая статистические закономерности языков.