Возникает соблазн изучить действие нелинейной положительной обратной связи "в чистом виде", не привлекая каких-либо усложняющих факторов и отвлекаясь от множества подробностей, связанных с описанием отдельных систем. Эта работа и была проведена упоминавшейся научной школой в Институте прикладной математики, МГУ и МФТИ, к которой и относят себя авторы этой книги.
Наиболее яркими и важными оказались результаты исследования нелинейной среды, в которой есть только два конкурирующих процесса. Это нелинейный источник, отражающий положительную обратную связь – Q(T), и диссипативный процесс, нелинейность которого определяется коэффициентом k(T)
Tt = (k(T)Tx)x + Q(T) (2)
Если эти функции имеют степенной вид:
.
Q(T) = q0, k(T) = k0, k0, q0,> 0,>0 (3)
то модель (2) называют моделью тепловых структур. Название связано с ее происхождением – первоначально она представлялась как упрощенная модель ряда процессов в физике плазмы и в теории управляемого термоядерного синтеза. Однако генезис модели сейчас не важен и ее вполне можно трактовать как феноменологическое описание распространения информации о некоторой проблеме в научном сообществе.
При такой интерпретации "пространственная координата" x характеризует интенсивность контактов "удаленность друг от друга" членов научного сообщества, переменная t – время, T – плотность информации в научном сообществе. Смысл нелинейных зависимостей также весьма прост. Растущая функция Q(T) отражает тот факт, что чем больше мы знаем, тем больше шансов узнать что-то еще. Нелинейность поясняет простая притча:"Если у тебя есть яблоко, и ты отдал его мне, то яблок у тебя не осталось. Но если у нас есть по идее, и мы рассказали их друг другу, то у каждого стало по две идеи." Степенная зависимость k(T) отражает тот простой факт, что если не о чем рассказывать, то информация не раcпространяется k(0)=0, а чем значительнее достижения, тем быстрее узнает о них сообщество.
Обсудим ряд свойств модели (2) и (3). Первый парадоксальный результат можно получить, предположив, что все члены сообщества одинаково информированы – Tx=0. Тогда
.
dT/dt = q0, T(0) = T0 (4)
гдеT0 – плотность информации в начальный момент времени. Решение этого уравнения существует только конечный промежуток времени, определяемый начальным значением T(0) (см. рис.13). После этого в игру должны вступать другие стабилизирующие факторы, и следует переходить к другим моделям (как мы увидим в четвертой главе, именно такая ситуация возникает при феноменологическом описании демографических процессов). Обратим внимание на замечательный характер кривых, соответствующих решениям уравнения (4). В течение длительного времени (специалисты называют его квазистационарной стадией) функция T почти не меняется, кажется, что вообще ничего не происходит. Но вблизи момента времени tf, называемого временем обострения, неустойчивость приобретает взрывной характер. Стандартный алгоритм прогнозирования, до сих пор применяемый в социальных науках – "посчитай на сколько процентов изменялась величина за предыдущий промежуток времени; чтобы получить будущее изменение, надо домножить этот процент на текущее значение". Знаменитый прием планирования "от достигнутого" – здесь неприменим.
Рис. 13. Решения уравнения (4) при различных начальных данных T_0. В каждом случае за конечный промежуток времени решение неограниченно возрастает.
Напротив, для линейного уравнения, предлагавшегося Мальтусом и его последователями для роста народонаселения
dn/dt n =n, n(0) = n0 (5)
он прекрасно работает. Решения этого линейного уравнения представлены на рис.14. Здесь решения также описывают некоторый рост. Но, во-первых, они существуют бесконечно долго. Во-вторых, роль начальных данных здесь не так драматична. Представим себе два решения уравнения (5), cоответствующие начальным данным n1(0) и n2(0). Соотношение между ними остается неизменным n1(t)/ n2(t)= n0(0)/ n2(0) и таким же, как вначале. Напротив, как бы ни была мала разница начальных данных для решения уравнение (4) T1(t) и T2(t), она будет стремительно расти T1(t)/T2(t), и вторая траектория "безнадежно отстанет" вблизи момента обострения первой. "Миры", в которых существуют эти решения, живут в разном темпе.
Рис. 14. Решение линейного уравнения (5) – простейшей математической модели демографии при различных начальных данных n0. Эта модель дает экспоненциальный рост населения. Если зафиксировать интервал Deltat, то величины n(0), n(t), n(2t) образуют геометрическую прогрессию.
Рассмотрим теперь пространственно-распределенную систему, дополнив модель (2) и (3) начальными данными
-, T(x, 0)=T0(x).