Каждая глава начинается с предельно простого и ясного изложения развиваемой авторами концепции. В этом научно-популярном изложении мы стремились избегать каких-либо формул, деталей и частностей. Многочисленные лекции, телевизионные передачи, статьи в журналах "Знание – сила", "Вопросы философии", "Общественные науки и современность", в различных сборниках убедили нас, что этот стиль доступен и привлекателен для весьма широкой аудитории. В конце последних трех глав приводятся данные, выкладки, результаты расчетов, позволяющие читателям, владеющим математическим аппаратом, оценить убедительность и достоверность тех или иных подходов, аргументов, концепций.
Материал размещен по главам таким образом, что от главы к главе обсуждаемые проблемы становятся все более конкретными, а соответствующие математические модели более наглядными.
Большую роль в выработке излагаемых в этой книге подходов сыграли наши оппоненты, коллеги и ученики. Критика последних была особенно глубокой и полезной, поскольку, по их мнению, авторам следовало бы заниматься более традиционными и привычными для специалистов в области физики или математического моделирования задачами.
Первая глава этой книги показывает, насколько глубоко меняет нелинейная динамика естественнонаучную парадигму, взгляд на случайность и детерминизм, на хаос и порядок, на возможность прогноза поведения сложных систем. Она заставляет пересмотреть подход к таким, казавшимся незыблемым понятиям, как длина, площадь, объем, процедуры измерения и сравнения теории с экспериментом. Все это не может не сказаться на мировоззрении, на отношении человека к себе и к обществу. Математическое моделирование приобретает черты своеобразной натурфилософии компьютерной эры. В анализе авторами этих проблем существенную роль сыграли исследования, проводившиеся совместно с Е.Н. Князевой и В.А.Белавиным.
Вторая глава представляет собой попытку осознать принципиальные трудности, возникающие при компьютерном моделировании социальных процессов, меняющих траекторию развития государств, этносов или цивилизации в целом. Этот круг задач возник в связи с тем, что ряд стратегических решений, принимаемых в современном мире, быстрое изменение технологий и ценностей ведут к принципиальным переменам на исторических временных масштабах. Анализ исторических событий выступает как своеобразный полигон, позволяющий отработать различные методы анализа, компьютерного моделирования, способов прогнозирования. На наш взгляд, человечество находится сейчас в слишком сложной ситуации, чтобы позволить себе роскошь ничему не учиться у истории. В ходе этой работы возникла концепция исторической механики и был введен новый класс математических моделей – динамические системы с джокерами. Возможно, последние окажутся полезны в теории риска, описывающей и предсказывающей природные и техногенные катастрофы, в математической психологии и некоторых других областях. Важную роль в выработке обсуждаемой концепции сыграл наш коллега – А.Б. Потапов.
В третьей главе рассматривается круг задач, связанный с компьютерным моделированием и прогнозом развития высшей школы России. Рассуждения о том, что без образования и науки у нашей страны нет будущего, стали общим местом. Однако путь от такого взгляда к конкретным стратегическим и управленческим решениям оказывается долгим и непростым. По мнению известного психолога и заместителя министра образования России В.Д. Шадрикова, которое мы всецело разделяем, он должен проходить через математический анализ конкретной ситуации, построение и исследование компьютерных моделей, прогноз развития системы в случае различных вариантов управляющих воздействий.
Из этой большой работы, начатой в 1994 г., в книгу вошли несколько новых моделей. Они, с одной стороны, могут оказаться полезными при оценке будущих проектов в сфере образования, с другой – по-новому взглянуть на ряд процессов, развивающихся в высшей школе.
Обратим внимание читателя на два обстоятельства, связанные с моделированием такого сорта. Условно их можно назвать выделением части из целого и "презумпцией оптимизма". Сильной стороной точных и естественных наук, как стало ясно со времен Френсиса Бэкона, является возможность выделить из огромного множества явлений и процессов небольшой круг, точно поставить вопрос и, пользуясь рядом процедур, получить конкретный ответ. При моделировании социальных систем способ выделения части из целого сейчас является гораздо менее очевидным, чем в физике, химии и биологии. Однако описанный вариант выделения ведущих переменных (параметров порядка) и построения системы моделей может оказаться интересным и полезным не только читателям и исследователям, которые его примут, но и тем, кто будет искать убедительные альтернативы.
Выводы и оценки этой главы могут показаться читателю слишком оптимистичными. И это вполне объяснимо. Действительно, в течение последнего десятилетия в России произошла катастрофа мирового масштаба.