Теорема Белла была впервые сформулирована ее автором, американским физиком-теоретиком Джоном Стюартом Беллом в 1964г. в контексте исследований моделей теорий со скрытыми параметрами. Напомним кратко, что это такое, отметив предварительно, что общая концепция скрытых параметров, как это станет ясно из дальнейшего, в достаточно отчетливом виде ее сторонниками никогда не формулировалась. Тем не менее, когда говорят о скрытых параметрах в квантовой механике, то, как правило, имеют в виду следующее. Известно, что квантовая механика является теорией вероятностного или статистического типа. Это означает, что она в общем случае не дает нам точных представлений результатов эксперимента. Например, она не предсказывает точное место попадания электрона, прошедшего через диффрагирующую систему на фотопластинку. Отсюда возникает предположение, что квантомеханическое описание физической системы с помощью волновой функции не является полным описанием «реального положения вещей», и что существуют некоторые дополнительные гипотетические переменные, которые «скрыты» от нас, то есть не доступны наблюдению и контролю с помощью имеющихся у нас экспериментальных средств. Фиксация этих переменных позволила бы точно предсказывать место попадания электрона на фотопластинку и дала бы тем самым возможность восстановить детерминизм классического типа при описании квантовых явлений. Надо сказать, что причины, по которым гипотеза скрытых параметров до сих пор привлекает внимание современных исследователей, не сводятся непосредственно лишь к стремлению восстановить классический детерминизм в области квантовых явлений. Речь, скорее, идет о стремлении сохранить объективный, «деперсонифицированный» язык описания. Это подтверждает и пример самого Белла. Объясняя мотивы, побудившие его заняться исследованием вопроса о скрытых параметрах в квантовой механике, он в качестве главного из них называет свою неудовлетворенность лежащим в основе принятой интерпретации квантовой механики расчленением физического мира на две принципиально различным образом описываемые области классических и квантовых явлений, и, при этом, без ясной экспликации связи между ними. В современной теории, указывает Белл, наиболее полное описание состояния мира в целом или любой его части имеет форму (λ
1,λ2,…,λi,ψ1,ψ2,…,ψi), где λi — классические переменные, описывающие состояние экспериментальной установки: положение переключателей, стрелок и т.д., а ψi — соответствующие квантовомеханические функции. Эта неоднородность или, точнее говоря, дуализм описания предполагает существование некоторой границы, разделяющей области классических и квантовых явлений, или, прибегая к более общей философской терминологии, границы между познающим субъектом, который существует в классическом мире, адаптирован к нему, «оснащен» соответствующей системой понятий и приборов, и познаваемым им квантовомеханическим объектом. При этом, если и имеется какое-то согласие в том, что по крайней мере переключатели и стрелки приборов находятся в классическом мире, «с нашей стороны», по эту сторону границы, то относительно «глубин ее залегания» существуют самые разные мнения. Разумеется, в плане практического применения теории, так сказать, в прагматическом аспекте, этот вопрос может и не представляться особо важным. Иное дело, если взглянуть на него с точки зрения фундаментальных принципов теории, которая обычно формулируется в терминах предсказаний результатов возможных экспериментов. Такая форма теории обязывает постулировать в ее собственных рамках существование квантовоклассической границы. Но в таком случае мы, видимо, вправе требовать от теории, чтобы она давала нам и некоторый рецепт, позволяющий всякий раз эту границу достаточно определенным образом идентифицировать. Однако теория в ее существующем виде эту границу не фиксирует, она оказывается подвижной и, во многом, условной. И это обстоятельство можно рассматривать как свидетельство того, что квантовая механика является самосогласованной и непротиворечивой теорией лишь в некотором