Читаем Синхроничность и Седьмая печать. Часть 1 полностью

До 1900 года многие ученые полагали, что энергия — это непрерывный поток силы, которую почти невозможно увидеть или различить. Или они, например, считали, что электромагнитное излучение представляет собой некую постоянную величину. Макс Планк опроверг это утверждение. Он обнаружил, что когда нагретое тело начинает излучать свои частицы в пространство, то с изменением температуры его цвет меняется определенным образом (известным нам как цветовой спектр). Это доказывало, что предметы (или вещества) являются хранилищами энергии, и что ее можно измерить. Латинское слово quanta означает «число» или «единица», и от него произошло английское слово quantity. Идею о том, что энергию можно количественно измерить, сразу окрестили Квантовой Теорией, и она стала теоретическим базисом современной физики. С 1900 года теория претерпела значительные изменения, и мы остановимся только на нескольких наиболее важных открытиях.

В 1924 году Луи де Бройль заметил, что между поведением материи и потоками энергий нет принципиальной разницы. Это относилось и к атомарному и субатомарному уровню, в отношении которого ученые целое столетие размышляли над вопросом, что считать более фундаментальным его проявлением — волну или частицу? Теория Бройля, названная принципом дуальности «частица-волна»[26], не дала ответа на вопрос, что из них первично, но констатировала тот факт, что и энергия, и вещество, в зависимости от конкретных обстоятельств, представляют собой либо частицы, либо волны.

В 1927 году Вернер Гейзенберг создал (а впоследствии и доказал) теорию о том, что невозможно измерить волну энергии и частицу одновременно. То есть, чем точнее вы измеряете частицу, тем больше ваши погрешности в измерениях волны, и наоборот.

С одной стороны, эти достижения были большим шагом вперед, так как помогли развить определенные области науки и техники, но с другой — они только затрудняли получение ответов на фундаментальные физические вопросы. Например, на вопрос о том, что первично — энергия или материя? Волна или частица? Эти колебания ученых получили название — квантовая неопределенность.

На Гейзенберга огромное влияние оказали теории Вольфганга Паули, который, в свою очередь, следовал концепции Нильса Бора, впоследствии названной «Копенгагенской интерпретацией квантовой физики». Теория ученого заключалась в следующем. Определить, частица перед вами или волна, можно, лишь произведя измерения, а до этого выявить их характерные признаки невозможно. Точнее, нельзя даже сказать, существует ли волна или частица, до тех пор пока не будут произведены измерения. Впоследствии был утвержден принцип, что мы не знаем, в каком состоянии находится любой предмет, пока не измерим или не осмотрим его. Таким образом, в любой момент времени предмет находится во множестве «квантовых» состояний, которые существуют до тех пор, пока он не подвергнется осмотру. В этом смысле, наблюдатель как бы создает «время», измеряя предмет, он словно искривляет «одновременное» состояние того, что наблюдает «сейчас». Такой принцип получил название суперпозиции: если мы не знаем наверняка, в каком состоянии находится предмет, значит, он находится во всех возможных состояниях одновременно, пока мы не осмотрим его или не измерим.

Самым известным примером этой теории служит парадокс кошки Шредингера. Если поместить живую кошку в коробку с толстыми свинцовыми стенками, мы знаем, что она жива. Однако если поместить туда пузырек с цианистым калием и закрыть коробку, то уверенности в том, что кошка в ней останется жива, уже не будет. Узнать о происшедшем можно, только открыв коробку и выступив с позиции наблюдателя. Законы квантовой физики называют это суперпозицией состояний: кошка может находиться в любом состоянии; узнать, в каком именно (жива она или мертва), можно только путем проверки и наблюдения.

Хотя парадигма с кошкой Шредингера служила как бы символом и гордостью лучших физиков прошлого века, тем не менее, она оказывается крепким орешком для многих людей. Помню, как-то я присутствовал на публичной лекции по физике в Брукхэвенской национальной лаборатории. Выступал австрийский профессор, которого ученые считали одним из величайших физиков в мире. Когда он нарисовал схему задачи о кошке Шредингера, большинство людей в лаборатории (в основном, студенты, изучающие физику) начали ухмыляться и хихикать. Профессор быстро прекратил дальнейший рассказ о бесконечности реальности, заявив, что мы не должны касаться этой темы. Забавно, что его лекция была посвящена тому, как шифровать информацию, пряча ее на уровне атомарных структур. Его доклад был блестящим, но он ведь на самом деле собирался еще больше зашифровывать все вещи в этом мире. Я не хочу сказать, что профессор был сумасшедшим, но то, как он стремился увести аудиторию от разговора о бесконечной реальности, весьма показательно для того, с чем приходится сталкиваться в кругах физиков.

Перейти на страницу:

Похожие книги

Повседневная жизнь колдунов и знахарей в России XVIII-XIX веков
Повседневная жизнь колдунов и знахарей в России XVIII-XIX веков

Вот уже более десяти лет в нашей стране продолжается настоящий бум на книги, в которых рассказывается об обычаях и традициях русского народа, о том, что определяет его характер и душу. И это не случайно, так как отличительной чертой последних лет является стремление возобновить и возродить давние традиции. В этой ситуации обращение к фольклору — это обращение не к прошлому, а к тем резервам души, которые есть в каждом и бывают востребованы в самые сложные, трудные минуты.В книге, которую вы сейчас держите в руках, автор коснулся одновременно «коммерческой» и очень тяжелой темы ведовства и знахарства, попытался представить общую картину обычаев и обрядов, поверий и суеверий, мифов и легенд русского народа, связанных с колдунами и ведьмами.

Наталия Валентиновна Будур

История / Эзотерика, эзотерическая литература / Эзотерика / Образование и наука