Читаем Системная технология полностью

* В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D; следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (3.3.2) и (3.3.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej ) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры ? целенаправленного процесса формирования модели (3.3.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур и ?с , ?р ? ?с. Далее, любая операция из Wc, например, объединение элементов а, а ? А и е, е ? E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ? B и d, d ? D. Следовательно, Wp = Wc. Но так как Wp ? Wc , Wc ? W и W \ {Wp ? Wc} = ?, то Wp = Wc = W. Итак, доказана следующая

Теорема 3.1.Для модели системы S модели процесса Р и структуры С изоморфны.

* Модели полных, основных и дополнительных системных объектов.

На основе (3.3.1)–(3.3.3) сформулируем следующий результат.

Теорема 3.2.Модель полной системы S – это совокупность моделей процесса Р и структуры С:

S = < P,C,?(?),?(?-1),?(?),?(?-1)>(3.3.4)

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже