Читаем Системная технология полностью

Отсюда очевидно, что любое ребро μ(ikik+N), N ≠ 1, графа будет повторяться в правых частях п систем неравенств (9.2.4) (а – N) раз для ik= i1, i2, …, in.

Следовательно, правая часть системы (9.2.4) примет вид:



Итак, условие а-оптимальности примет вид:


для а ≥ 5.


После простых преобразований получаем

для а ≥ 5.


Отсюда получаем условие n-оптимальности (а=n):


И, далее, условие (n+1)-оптимальности (а=n+1), т.е. условие оптимальности собственно гамильтонова цикла, принимает вид


Можно усилить условие (9.2.7), введя вместо проверки суммарного неравенства проверку по всем k. Получим условия а-оптимальности гамильтонова цикла в виде:


Выше было показано, что а1-оптимальный гамильтонов цикл а2-оптимален, если а1 > а2. Поэтому условие оптимальности гамильтонова цикла можно преобразовать к виду (а=n+1):


9.3. Алгоритм

«Принцип обогащения» применительно к решению задачи о коммивояжере (ЗОК) заключается в следующем: с помощью некоторого условия проверить все ветви графа на наличие полезных свойств (в данном случае это «способность» участвовать в оптимальном гамильтоновом цикле) и для дальнейшего решения задачи оставить только эти «полезные» ветви. В случае, когда используемое условие достаточно сильно, после этой проверки останутся только ветви оптимального гамильтонова цикла. В другом случае из рассмотрения будет исключена часть ветвей графа, что дает возможность сократить время поиска решения с применением какого-либо алгоритма.

Таким образом, весь процесс решения задачи делится на 2 стадии: первая – «обогащение» исходного числового массива, вторая – применение алгоритма поиска на «обогащенном» массиве.

Реализация первой стадии при решении ЗОК возможна с применением полученного в разделе 9.2 условия оптимальности гамильтонова цикла в графе G с п вершинами.

Условие оптимальности можно использовать для «обогащения» исходного множества ветвей графа: после проверки всех ветвей графа на условие оптимальности число ветвей, которое целесообразно использовать при дальнейшем решении ЗОК, сократится. Ввиду очевидной простоты описание алгоритма не приводится.

Опыт применения этого условия для графов с п = 11–67 показал, что после однократного применения такой операции ко всем ветвям графа число ветвей в обогащенном массиве сокращается, как правило, до 15% от первоначального.

Для поиска оптимального гамильтонова цикла на обогащенном массиве использовался следующий метод. Известно, что существующие алгоритмы решения ЗОК не ставят целью обеспечение или проверку а-оптимальности получаемого гамильтонова цикла.

Предлагаемый алгоритм основан на последовательном обеспечении а-оптимальности решения ЗОК на обогащенном массиве исходных данных и состоит в выполнении следующих операций.


Алгоритм «а-оптимум».

0. Задаем произвольно исходный гамильтонов цикл i1, …, ik, …, in, i1 с весом μ (i1, …, in, i).

1. 3адаем значение а; а=4,5, …,п, п+1.

2. Задаем значение k; k=1,2,…,п,1,2, …,п,2,… .

3. Для вершины ik сравниваем все последовательности на а вершинах, ik, …, ik+a-1, получаемые перестановками а-2 промежуточных вершин между ik и iк+а-1 по их весам р(iк,…, ik+a-1), и выбираем последовательность с наименьшим весом. При этом последовательности, содержащие ветви с весом, равным бесконечности (между этой парой вершин нет соединения), отбрасываем сразу, не вычисляя веса.

Если веса всех последовательностей в операции 3 равны, либо вес μ (ik, ik+1, …, ik+a-2, ik+a-1) является минимальным, оставляем в гамильтоновом цикле последовательность ik, ik+1, ik+a-1, имевшую место в начале операции 3 для данного k. Этот факт фиксируем и переходим к операции 4.

Если таких последовательностей несколько, то из них выбираем первую по счету, вводим ее в гамильтонов цикл вместо соответствующей прежней и переходим к операции 2, где задается очередное значение k.

4. Фиксируем значение k. Проверяем все зафиксированные ранее значения k. Если ранее зафиксированы не все значения k, то переходим к операции 2, где задается очередное значение k. Если ранее зафиксированы все значения k=1,2,…, п, то полученный гамильтонов цикл а-оптимален. Переходим к операции 5.

5. Проверка одинаковости решений при а-2, а-1, а.

Примечание. Оптимальный ((п+1)-оптимальный) гамильтонов цикл а-оптимален для всех значений а. Но такая проверка для больших значений а требует неприемлемых затрат времени. Поэтому для конкретных задач можно ограничиться обеспечением условия совпадения а-оптимальных гамильтоновых циклов для нескольких последовательных значений а, например трех (т.е., когда удлинение проверяемых последовательностей на одну, две ветви не дает улучшения результата).

Перейти на страницу:

Похожие книги

Холодный мир
Холодный мир

На основании архивных документов в книге изучается система высшей власти в СССР в послевоенные годы, в период так называемого «позднего сталинизма». Укрепляя личную диктатуру, Сталин создавал узкие руководящие группы в Политбюро, приближая или подвергая опале своих ближайших соратников. В книге исследуются такие события, как опала Маленкова и Молотова, «ленинградское дело», чистки в МГБ, «мингрельское дело» и реорганизация высшей власти накануне смерти Сталина. В работе показано, как в недрах диктатуры постепенно складывались предпосылки ее отрицания. Под давлением нараставших противоречий социально-экономического развития уже при жизни Сталина осознавалась необходимость проведения реформ. Сразу же после смерти Сталина начался быстрый демонтаж важнейших опор диктатуры.Первоначальный вариант книги под названием «Cold Peace. Stalin and the Soviet Ruling Circle, 1945–1953» был опубликован на английском языке в 2004 г. Новое переработанное издание публикуется по соглашению с издательством «Oxford University Press».

А. Дж. Риддл , Йорам Горлицкий , Олег Витальевич Хлевнюк

Фантастика / Политика / Фантастика / Зарубежная фантастика / Образование и наука / Триллер / История