Читаем Системное программирование в среде Windows полностью

Существуют многочисленные вариации этой модели, одной из которых является модель рабочей группы (work crew model), в которой рабочие потоки объединяют свои усилия для решения одной задачи, причем каждый отдельный поток выполняет свою небольшую часть работы. Модель рабочей группы используется в нашем следующем примере (рис. 7.2). Рабочие группы даже могут самостоятельно распределять работу между собой без получения каких-либо указаний со стороны главного потока. В многопоточных программах может быть применена практически любая из схем управления, разработанных для коллективов в человеческом обществе. 

Рис. 7.2. Выполнение сортировки слиянием с использованием нескольких потоков

Двумя другими основными моделями являются модель "клиент/сервер" (client/server) (проиллюстрирована на рис. 7.1, а пример ее практической реализации рассматривается в главе 11) и конвейерная модель (pipeline model), в которой выполнение задания передается от одного потока к другому (пример многоступенчатого конвейера рассматривается в главе 10 и иллюстрируется на рис. 10.1).

При проектировании многопоточных систем эти модели обладают целым рядом преимуществ, к числу которых можно отнести следующие:

• Большинство проблем многопоточного программирования могут быть разрешены с использованием одной из стандартных моделей, облегчающих проектирование, разработку и отладку программ.

• Применение понятных и проверенных моделей не только позволяет избежать многих ошибок, которые легко допустить при написании многопоточных программ, но и способствует повышению производительности результирующих приложений.

• Эти модели естественным образом соответствуют структуре большинства обычных задач программирования.

• Программистам, сопровождающим программу, будет гораздо легче понять ее устройство, если она будет описана в документации на понятном языке. 

• Находить неполадки в незнакомой программе гораздо легче, если ее можно анализировать в терминах моделей. Очень часто главную причину неполадок удается установить на основании видимых нарушений базовых принципов одной из моделей.

• Многие распространенные дефекты программ, например, нарушение условий состязаний задач и их блокирование, также можно описать с использованием простых моделей, к числу которых относятся эффективные методы использования объектов синхронизации, описанные в главах 9 и 10.

Эти классические модели потоков реализованы во многих ОС. В модели компонентных объектов (Component Object Model, COM), широко используемой во многих Windows-системах, применяется другая терминология, и хотя рассмотрение модели СОМ выходит за рамки данной книги, об этих моделях говорится в конце главы 11, где они сравниваются с другими примерами программ.

<p>Пример: применение принципа "разделяй и властвуй" для решения задачи сортировки слиянием в SMP-системах</p></span><span>

Этот пример демонстрирует возможности значительного повышения производительности за счет использования потоков, особенно в случае SMP-систем. Основная идея заключается в разбиении задачи на более мелкие составляющие, распределении выполнения подзадач между отдельными потоками и последующем объединении результатов для получения окончательного решения. Планировщик Windows автоматически назначит потокам отдельные процессоры, в результате чего задачи будут выполняться параллельно, снижая общее время выполнения приложения.

Эта стратегия, которую часто называют стратегией "разделяй и властвуй" (divide and conquer), или моделью рабочей группы (work crew model), оказалась весьма полезной и в качестве средства повышения производительности, и в качестве метода проектирования алгоритмов. Одним из примеров ее применения служит программа grepMT (программа 7.1), в которой для каждой файловой операции ввода/вывода и для поиска шаблона создается отдельный поток. Как показано в приложении B, в случае SMP-систем производительность повышается, поскольку планировщик может распределять выполнение потоков между различными процессорами.

Далее мы рассмотрим другой пример, в котором задача сортировки содержимого файла разбивается на ряд подзадач, выполнение которых делегируется отдельным потокам.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных