Читаем Системное программирование в среде Windows полностью

/* Уменьшить значение счетчика семафора на 2. */

WaitForSingleObject(hSem, INFINITE);

WaitForSingleObject(hSem, INFINITE);

/* Увеличить значение счетчика семафора на 2. */

ReleaseSemaphore(hSem, 2, &PrevCount);

Чтобы увидеть, каким образом в подобной ситуации может возникнуть взаимоблокировка, предположим, что максимальное и начальное значения счетчика устанавливаются равными 2 и что первый из двух потоков завершает первый цикл ожидания, а затем вытесняется. Далее второй поток может завершить первый цикл ожидания и уменьшить значение счетчика до 0. Оба потока окажутся блокированными на неопределенное время, поскольку ни одна из них не сможет выполнить второй цикл ожидания. Такая простая ситуация взаимоблокировки является довольно типичной.

Один из возможных вариантов правильного решения заключается в том, чтобы защитить циклы ожидания при помощи мьютекса или объекта CRITI-CAL_SECTION, как показано в приведенном ниже фрагменте программного кода:

/* Уменьшаем значение счетчика семафора на 2. */

EnterCriticalSection(&csSem);

WaitForSingleObject(hSem, INFINITE);

WaitForSingleObject(hSem, INFINITE);

LeaveCriticalSection (&csSem);

ReleaseSemaphore(hSem, 2, &PrevCount);

Но и эта реализация, в таком общем виде, страдает ограничениями. Предположим, например, что в счетчике семафора остается две единицы, и потоку А необходимы три единицы, а потоку В — только две. Если первой начнет выполняться поток А, то он выполнит два цикла ожидания и блокируется на третьем, продолжая владеть мьютексом. При этом поток В, которому были необходимы только две единицы, по-прежнему будет оставаться блокированным.

Казалось бы, можно воспользоваться функцией WaitForMultipleObjects с использованием одного и того же дескриптора семафора в нескольких элементах массива дескрипторов. Однако такое предложение было бы неудачным по двум причинам. Прежде всего, обнаружив, что два дескриптора указывают на один и тот же объект, функция WaitForMultipleObjects завершится с ошибкой. Более того, даже если значение счетчика семафора будет составлять только 1, сигнализироваться будут все дескрипторы, что противоречит самой исходной цели.

Полное решение проблемы множественных циклов ожидания предлагается в упражнении 10.11. 

Проектировать семафоры Windows было бы гораздо удобнее, если бы существовала возможность выполнять множественные циклы ожидания в виде одной атомарной операции (atomic multiple-wait operation).

<p>События</p></span><span>

Последним из рассматриваемых нами типов объектов синхронизации ядра являются события (events). Объекты события используются для того, чтобы сигнализировать другим потокам о наступлении какого-либо события, например, о появлении нового сообщения.

Важной дополнительной возможностью, обеспечиваемой объектами событий, является то, что переход в сигнальное состояние единственного объекта события способен вывести из состояния ожидания одновременно несколько потоков. Объекты события делятся на сбрасываемые вручную и автоматически сбрасываемые, и это их свойство устанавливается при вызове функции CreateEvent.

• Сбрасываемые вручную события (manual-reset events) могут сигнализировать одновременно всем потокам, ожидающим наступления этого события, и переводятся в несигнальное состояние программно.

• Автоматически сбрасываемые события (auto-reset event) сбрасываются самостоятельно после освобождения одного из ожидающих потоков, тогда как другие ожидающие потоки продолжают ожидать перехода события в сигнальное состояние.

События используют пять новых функций: CreateEvent, OpenEvent, SetEvent, ResetEvent и CreateEvent. 

HANDLE CreateEvent(LPSECURITY_ATTRIBUTES lpsa, BOOL bManualReset, BOOL bInitialState, LPTCSTR lpEventName) 

Чтобы создать событие, сбрасываемое вручную, необходимо установить значение параметра bManualReset равным True. Точно так же, чтобы сделать начальное состояние события сигнальным, установите равным True значение параметра bInitialState. Для открытия именованного объекта события используется функция OpenEvent, причем это может сделать и другой процесс.

Для управления объектами событий используются следующие три функции: 

BOOL SetEvent(HANDLE hEvent)

BOOL ResetEvent(HANDLE hEvent)

BOOL PulseEvent(HANDLE hEvent) 

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных