Читаем Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии полностью

На самом деле это просто: ваш «детектор» не в лодке, а вокруг вас. Другие лодки, плывущие в океане, будут, как и ваша, слегка подниматься и опускаться на мелких частых волнах, но, если наблюдать за ними долгое время, эти движения можно исключить путем усреднения. Низкочастотные волны заставят другие лодки «нырять» очень медленно. Измерив растянутые во времени перемещения некоторого числа этих лодок, вы узнаете о существовании медленных колебаний поверхности океана. Если вы знаете расстояния до каждой из лодок и накопили достаточно замеров, то сможете даже обнаружить несколько отдельных источников низкочастотных волн.

Именно так действует решетка наблюдения за временнóй динамикой пульсаров. Поверхность океана – это пространственно-временной континуум. Окружающие лодки – миллисекундные пульсары в Млечном Пути. Пульсары не подпрыгивают вверх-вниз на волнах (как я уже говорил, идеальной аналогии не существует). Вместо этого попеременно растягивается и сжимается при прохождении низкочастотной гравитационной волны пространство между Землей и определенным пульсаром – в действительности это пространство увеличивается и вновь сокращается, очень медленно и в очень малой степени. Но, если следить за временем прибытия импульсов много лет, эффект постепенно проявится. Очень просто!

Конечно, не очень просто. Если бы Земля и пульсар оставались неподвижными в пространстве и пульсар был действительно идеальным часовым механизмом, то все колебания времени прибытия импульсов объяснялись бы волнами Эйнштейна. Но ситуация намного сложнее. Прежде всего, пульсары несовершенны – ничто в природе не совершенно. Их вращение замедляется, хотя и очень медленно. У них наблюдаются «глитчи» – неожиданные крохотные изменения периода вращения. Глитчи могут вызываться «звездотрясениями» поверхности или взаимодействием коры нейтронной звезды со сверхтекучей внутренней областью. Если не измерять эти эффекты и не делать поправки на них, вы не сможете заметить гравитационную волну.

Более того, миллисекундные пульсары часто входят в двойные системы. Необходимо учитывать их орбитальное движение, также влияющее на время прибытия импульсов. Нужно корректировать и движение вашего радиотелескопа в пространстве. Собственное вращение Земли, ее движение по орбите вокруг Солнца, мелкие гравитационные возмущения со стороны других планет Солнечной системы, приливно-отливные явления, движение Солнца по Млечному Пути, даже континентальный дрейф – необходимо учитывать все. Для этого нужно точно смоделировать все возможные влияния и очистить от них измерения. Все оставшиеся отклонения от равномерного потока импульсов могут быть вызваны гравитационными волнами.

В принципе, этот эксперимент можно поставить с единичным миллисекундным пульсаром. Но тогда нельзя быть уверенным, что действительно измеряешь гравитационные волны, а не что-нибудь еще. Пульсаров должно быть больше – и чем больше, тем лучше. Желательно случайным образом распределенных по всему небу. Нужно очень внимательно наблюдать за ними годами, а лучше десятилетиями. Чем дольше ведутся наблюдения, тем точнее эксперимент. Знание расстояний до пульсаров значительно облегчает анализ результатов наблюдений. Возможно, вы найдете пару источников наногерцовых гравитационных волн, выделяющихся из хаотичных фоновых сигналов, – относительно близко расположенные двойные системы сверхмассивных ЧД.

Большим преимуществом решеток наблюдения за пульсарами является то, что это бесплатный «инструмент». В галактике Млечный Путь множество сверхточных часов. Не нужно конструировать и строить сложные и дорогие лазерные интерферометры. Все, что нужно, – достаточно большой радиотелескоп (подойдет уже существующий) и электроника, чтобы выделять из данных наблюдений сигналы пульсаров и точно измерять время прибытия импульсов. Это весьма сложная задача, но не обязательно требующая затрат сотен миллионов долларов. Можно сказать, изучение временной динамики пульсаров – метод поиска гравитационных волн «для бедных».

Поиск потребует настойчивости и терпения. Это наука неторопливых. Начав проект сегодня, не надейтесь получить результаты раньше чем через 10–15 лет. Во всяком случае, об этом свидетельствует австралийский проект «Решетка для наблюдения за временной динамикой пульсаров в Парксе» (Parks Pulsar Timing Array, PPTA)[97]. Официально он стартовал в 2004 г., но до сих пор не зарегистрировал ничего существенного. Команда в 30 с лишним человек и их руководитель Джордж Хоббс из Австралийского национального комплекса телескопов терпеливо продолжают сбор данных, пытаясь повысить точность эксперимента.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги