Каждый раз, когда мы поднимаемся в кору из белого вещества, перед нами разворачиваются потрясающие виды. Нас окружает панорама мерцающих нейронов, светящихся точек, искрящихся импульсами, словно ночное небо, покрытое звездами и галактиками. Но, как и в космосе, тьмы здесь больше, чем света. Эти яркие точки на небосводе коры головного мозга, рассылающие импульсы нейроны – лишь искры в обширной, всепоглощающей тьме. Звезды среди мрака молчаливых нейронов.
Куда бы мы ни последовали за импульсом, нас везде ждет тьма. Теперь мы оказались в последних областях коры головного мозга, которые имеют дело со зрением, где цвет встречает форму («Светло-коричневое печенье с шоколадной крошкой!»), где характерные кривые превращаются в лица («Анджела и Измаил стоят около двери в переговорку и не смотрят в эту сторону»). Наш импульс пронесся мимо миллиардов нейронов коры головного мозга. И подавляющее большинство из них не отправило ни единого импульса за ту секунду, пока мы пересекали мозг. Подавляющее большинство вообще ничего не отправляет. Даже нейробиологам трудно в это поверить, что неудивительно, поскольку наши данные показывают обратное.
Нейровизуализация – фМРТ – показывает нам цветные изображения коры головного мозга, ее области то и дело вспыхивают вихрями буйства неудачно подобранных условных оттенков, от которых люди из Pantone тихо плачут в свои модные кофейные кружки. Из-за вихрей цвета кажется, что в коре головного мозга постоянно кипит работа. Когда мы видим лицо, визуальные области коры головного мозга выстреливают очереди импульсов из V1, из V4, вплоть до областей распознавания лиц в височной доле. Когда мы слышим крещендо струнного оркестра, слуховые области нашей коры расцветают залпами импульсов.
Классические исследования отдельных нейронов показывают нам, что у каждого нейрона, скорее всего, есть своя роль. Каждый на что-то реагирует: на линию, угол, движение, цвет. Потому что, когда экспериментаторы опускают тонкие иголки электродов в кору головного мозга, они могут записывать импульсы, исходящие от тела нейрона, и ассоциировать их с чем-то происходящим в окружающем мире. Множество исследователей занимается поиском связей этих сигналов с особенностями видимого мира, изучая такие нейроны, как те, что мы уже встречали, различающие простое и сложное, края, линии и углы, контрасты, формы, объекты, лица. Выбрав иную отправную точку, мы встретили бы другие их разновидности: нейроны слуховой коры, реагирующие на звуки определенной частоты; нейроны соматосенсорной коры, отвечающие на прикосновение к пальцу, ноге или руке.
Десятилетия работы и десятки тысяч экспериментов показывают, что, опуская электрод в любой участок головного мозга, мы наткнемся на полчища нейронов, которые реагируют на что-то свое. Так что почти наверняка все нейроны только и делают, что посылают импульсы в ответ на какие-то сигналы.
А вот элементарная арифметика говорит, что это не так. Недавно мы били баклуши в простой клетке в V1, и если бы мы там задержались подольше, то увидели бы, что она генерирует порядка пяти импульсов в секунду. Как мы теперь знаем, ей нужно около 100 входящих импульсов, чтобы отправить один. Получается, за эту секунду ей должно поступить в общей сложности не менее 500 входящих импульсов возбуждения. Но мы также знаем, что нейрон V1 имеет около 7500 возбуждающих входов. Если бы каждый из этих входящих сигналов приходил с периодичностью пять импульсов в секунду, то в общей сложности клетка получала бы 50 000 импульсов на входе каждую секунду. Это слишком много, в 100 раз больше, чем нужно [140]
. В ответ на такой поток входящих сигналов простая клетка из в V1 должна была бы каждую секунду посылать 500 импульсов.Но, конечно, наш нейрон этого не делает и его входы не получают такого количества входящих сигналов. Они бы и не смогли: посылать 500 импульсов каждую секунду для нейрона равносильно попытке человека перекричать реактивный самолет. Это теоретическая максимальная скорость, с которой нейрон коры может отправлять импульсы, и то с подачи жестокого экспериментатора. Хотя бы потому, что после каждого отправленного импульса есть несколько миллисекунд, в течение которых нейрон физически не может сгенерировать следующий. На самом деле даже самый активный нейрон коры головного мозга может выдавать непрерывную серию импульсов с частотой не более 30 разрядов в секунду.
Вот вам парадокс: нейроны коры головного мозга посылают импульсы значительно реже, чем могли бы, если бы все их входы были одинаково активны. Единственное возможное объяснение состоит в том, что большинство входов нейрона в коре головного мозга просто не получают импульсов. Это в свою очередь означает, что большинство нейронов коры головного мозга не отправляют импульсов. Но так ли это?