Математики говорят, что бесконечный стол и экран компьютерной игры — это поверхности
Наконец, ломтик картофельных чипсов «Принглс», если его бесконечно продолжить во все стороны (это несколько труднее изобразить), даёт представление об ещё одной однородной фигуре, про которую математики говорят, что она имеет
К счастью, эти описания двумерных однородных фигур без усилий расширяются на интересующий нас случай трёхмерного космического пространства. Положительная, отрицательная или нулевая кривизна — однородное раздувание, однородное сжатие или отсутствие искажений — с тем же успехом характеризуют трёхмерные однородные формы. В действительности нам повезло дважды, поскольку хотя трёхмерные формы очень трудно изобразить (представляя себе форму, наше сознание помещает её в некое окружение — аэроплан
В приведённой ниже таблице я перечислил возможные варианты формы пространства, подчеркнув, что одни из них имеют конечную протяжённость (сфера, экран компьютерной игры), а другие — бесконечную (бесконечный стол и бесконечная чипсина). Таблица 2.1 не является полной. Существуют другие возможные формы, которые носят загадочные названия вроде
Таблица 2.1. Возможные варианты формы космического пространства, которые находятся в согласии с космологическим принципом — допущением о том, что любое положение во вселенной эквивалентно любому другому
Форма | Кривизна | Протяжённость |
---|---|---|
Сфера | Положительная | Конечная |
Поверхность стола | Нулевая («плоская») | Бесконечная |
Экран компьютерной игры | Нулевая («плоская») | Конечная |
Ломтик чипсов «Принглс» | Отрицательная | Бесконечная |
Наша Вселенная
Расширение пространства, обнаруженное математическим путём Леметром и Фридманом, применимо к любой вселенной, имеющей одну из вышеперечисленных форм. В случае положительной кривизны можно воспользоваться двумерной аналогией и представить себе, как растягивается поверхность воздушного шарика по мере того, как его надувают воздухом. Для нулевой кривизны подходит образ плоского резинового коврика, который равномерно тянут во всех направлениях. В случае отрицательной кривизны вообразите растягиваемую резиновую чипсину. Если галактики представить себе как равномерно разбросанные блёстки на любой из этих поверхностей, расширение пространства приведёт к тому, что отдельные блёстки-галактики будут отодвигаться друг от друга — в точности как в той картине разбегания галактик, которую наблюдал Хаббл в 1929 году.