Расширив первоначальные идеи Цузе, учёный-компьютерщик Юрген Шмидхубер пришёл к похожему заключению, но с другой точки зрения. Шмидхубер осознал, что на самом деле легче запрограммировать компьютер для создания сразу всех возможных вычислимых вселенных, чем индивидуально запрограммировать компьютеры для их создания одной за другой. Чтобы понять почему, представим программирование компьютера для симуляции игры в бейсбол. В каждой игре количество необходимой информации огромно: каждая деталь каждого игрока, физическая и ментальная, каждая деталь стадиона, арбитров, погоды и так далее. Каждая новая симуляция игры требует от вас задать новую груду данных. Однако, если вы решите смоделировать не одну или несколько игр, но вообще
Суть в том, что для задания какой-либо одной составляющей из большого набора требуется большое количество информации, а задание всего набора в целом зачастую гораздо проще. Шмидхубер обнаружил, что это заключение применимо к смоделированным вселенным. Программист, приглашённый для симуляции набора вселенных, основанных на определённом наборе математических уравнений, может пойти простым путём: подобно бейсбольному фанату, он может предпочесть написать одну, относительно короткую программу, которая создаст
Любой из этих сценариев — много пользователей, моделирующих много вселенных, или одна мастер-программа, моделирующая их все разом — пригоден для образования смоделированной мультивселенной. Поскольку возникающие вселенные будут основываться на широком наборе различных математических законов, можно эквивалентным образом считать, что эти сценарии генерируют часть окончательной мультивселенной — ту часть, что охватывает вселенные, основанные на вычислимых математических функциях.[69]
Недостаток генерации только части окончательной мультивселенной в том, что в уменьшенной версии не так ясно видна идея, которая изначально вдохновила Нозика на принцип изобилия. Если все возможные вселенные не существуют, если полная окончательная мультивселенная не генерируется, то опять всплывает вопрос, почему некоторые уравнения реализуются в природе, а другие нет. В частности, мы по-прежнему будем задаваться вопросом, почему вселенные, основанные на вычислимых уравнениях, занимают такое выделенное место под солнцем.
Продолжая крайне спекулятивную линию изложения этой главы, заметим, что разделение на вычислимые/невычислимые о чём-то нам говорит. Вычислимые математические уравнения позволяют обойти неудобные вопросы, которые были подняты в середине предыдущего столетия такими выдающимися мыслителями, как Курт Гёдель, Алан Тьюринг и Алонзо Чёрч. Знаменитая