Но муху вы не убедили. «Я согласна с тобой, если речь идёт о смещении на сантиметр или полсантиметра, или даже на четверть сантиметра, — отвечает муха. — Но когда ты говоришь о положениях в пространстве, разделённых расстояниями в одну десятитысячную или в одну миллионную сантиметра, то я там просто не умещусь! Пусть для какого-нибудь умника это разные положения, но мой жизненный опыт подсказывает, что нет никакой разницы между
Муха подняла важный вопрос. Вообще говоря, количество положений мухи, как и количество возможных скоростей — бесконечно. Но на практике есть предел того, насколько точно можно ощутить разницу скоростей и положений, прежде чем она пропадёт окончательно. Это будет верно, даже если оснастить муху самым лучшим оборудованием. Всегда существует предел малости измеряемого приращения скорости или положения. И неважно, насколько малы эти минимальные приращения; если они отличны от нуля, они радикально сужают область возможных значений измерений.
Например, если наименьшее приращение, которое можно измерить, составляет сотую долю сантиметра, то в каждом сантиметре содержится не бесконечное число возможных измеряемых положений, а всего лишь сотня. Таким образом, в каждом кубическом сантиметре содержится 1003 = 1 000 000 различных положений, а в спальне средних размеров их будет около 100 триллионов. Трудно сказать, впечатлит ли муху такой спектр предложений, и оставит ли она вас в покое. Вывод, однако, состоит в том, что
Вы можете возразить, что неспособность различать кратчайшие пространственные расстояния или фиксировать мельчайшую разницу между скоростями является всего лишь технологическим ограничением. Прогресс не стоит на месте, точность оборудования растёт, так что число заметно разных положений и скоростей, доступных хорошо финансируемой мухе, тоже будет увеличиваться. Здесь, однако, я должен обратиться к основам квантовой теории. В соответствии с квантовой механикой есть вполне определённый смысл в том, что
Принцип неопределённости утверждает, что какие бы измерительные приборы или способы измерений вы не использовали, за увеличение разрешения при измерении одной величины неизбежно приходится платить — падает точность измерения некоторой дополнительной к ней величины. Одним из главных примеров проявлений принципа неопределённости является то, что чем точнее вы измеряете положение объекта, тем менее точно вы может измерить его скорость, и наоборот.
Для классической физики, той физики, которая во многом соответствует нашим интуитивным представлениям об устройстве этого мира, данное ограничение абсолютно чуждо. Однако как некую грубую аналогию, представьте себе процесс фотографирования той ехидной мухи. Если скорость затвора высока, получится контрастное изображение, на котором будет запечатлено положение мухи в тот момент, когда вы сделали снимок. Но из-за того, что это моментальный снимок, муха на нём неподвижна, и он не содержит никакой информации о её скорости. При уменьшении скорости затвора получится расплывчатый снимок, содержащий некоторую информацию о движении, однако именно из-за этой расплывчатости на снимке не будет точных данных о положении мухи. Невозможно сделать снимок, содержащий информацию и о точном положении, и о точной скорости мухи.