Читаем Скрытая реальность. Параллельные миры и глубинные законы космоса полностью

Одна из самых красивых черт струнной теории (то, что более всего меня поразило, когда я приступил к её изучению) состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Подобно тому как поток воздуха, проходящий сквозь духовой инструмент, приобретает колебательное движение, характер которого определяется геометрической формой инструмента, колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений.

Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби — Яу (на математическом жаргоне многообразия Калаби — Яу), названных в честь математиков Эудженио Калаби и Шин-Туна Яу, которые изучали их свойства задолго до осознания важности их роли в теории струн (рис. 4.6). Проблема в том, что нет какой-то одной, выделенной формы Калаби — Яу. Наоборот, подобно музыкальным инструментам, эти пространства имеют разные размеры и контуры. И так же как разные музыкальные инструменты издают разные звуки — дополнительные измерения, различающиеся по размерам и по форме (а также по другим параметрам, с которыми мы встретимся в следующей главе), порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.

Рис. 4.6. Крупный план пространственной структуры в теории струн, где показан пример дополнительных измерений, закрученных в одно из пространств Калаби — Яу. Подобно набивке на основе ковра, пространство Калаби — Яу прикреплено в каждой точке трёх привычных больших измерений (представленных двумерной решёткой), однако для простоты восприятия эти пространства размещены только в узлах решётки

Когда я начал заниматься теорией струн в середине 1980-х годов, было известно небольшое количество пространств Калаби — Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Моя диссертация стала одним из самых первых шагов в этом направлении. Спустя несколько лет, когда я стал постдоком (под руководством того самого Яу из Калаби — Яу), число пространств Калаби — Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения — но ведь для этого и существуют студенты! Время шло и число страниц в каталоге пространств Калаби — Яу только увеличивалось; как будет видно в главе 5, теперь их больше чем песчинок на пляже. На всех пляжах вместе взятых. Даже представить невозможно. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби — Яу то самое, единственное. Пока это никому не удалось.

Поэтому теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля.{33}

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже