В течение многих лет физики и математики достаточно продуктивно пользовались этим словариком по переводу сложного в простое для продвижения вперёд в решении ряда важных математических проблем. Одна такая задача, которую я особенно люблю, посвящена подсчёту числа сфер, которые можно упаковать (некоторым специальным математическим способом) в заданное пространство Калаби — Яу. В течение долгого времени математики интересовались этим вопросом, но вычисления во всех случаях, кроме простейших, были непреодолимыми. Возьмите пространство Калаби — Яу, показанное на рис. 4.6. Если упаковывать сферу в это пространство, она может много раз намотаться на часть пространства Калаби — Яу, подобно тому как лассо может много раз намотаться на пивную бочку. Итак, сколько существует способов упаковать сферу в данное пространство, если сфера наматывается, скажем, пять раз? Услышав такой вопрос, математик должен кашлянуть, бросить мельком взгляд на свои ботинки и быстро удалиться, сославшись на неотложную встречу. Теория струн сгладила остроту вопроса. Переводя вычисления со сложного на простое пространство из пары Калаби — Яу, струнные теоретики получили ответы, которые огорошили математиков. Каково число пятикратно намотанных сфер, упакованных в пространство Калаби — Яу на рис. 4.6? 229 305 888 887 625. А если сфера намотана десять раз? 704 288 164 978 454 686 113 488 249 750. Двадцать раз? 53 126 882 649 923 577 113 917 814 483 472 714 066 922 267 923 866 451 936 000 000. Эти числа стали предвестниками целого спектра результатов, открывших новую главу в математике.{35}
Итак, независимо от того, правильно теория струн описывает физическую Вселенную или нет, она уже проявила себя в качестве мощного инструмента исследований вселенной математической.
Современный статус теории струн
Информация из предыдущих четырёх глав собрана в табл. 4.2, которая является своеобразным отчётом о состоянии теории струн. Также она включает некоторые дополнительные данные, на которых я подробно не останавливался. Эта картина описывает теорию в её развитии, которая уже добилась ошеломляющих результатов, но до сих пор лишена самого важного: экспериментального подтверждения. Она так и будет оставаться умозрительной до тех пор, пока не будет установлена убедительная связь с экспериментом или наблюдениями. Поиск такой связи является важнейшей задачей. Однако заметим, что такая ситуация характерна не только для теории струн. Любая попытка объединить гравитацию и квантовую механику выводит в область, находящуюся далеко за пределами современных возможностей экспериментальных исследований. Это неизбежно, когда ставятся такие в высшей степени амбициозные цели. Расширение границ фундаментальных знаний в поиске ответов на самые глубокие вопросы, занимающие умы человечества последние несколько тысячелетий, является выдающимся проектом, который вряд ли удастся быстро осилить. Скорее всего, не хватит даже десятилетий.
Таблица 4.2. Краткий отчёт о состоянии теории струн