Многие физики полагают — правильнее было бы сказать, надеются, — что некое подобное полное сокращение, обусловленное ещё не открытой симметрией физических законов, исправит вычисление энергии квантовых флуктуаций. Было высказано предположение, что когда наше понимание физики выйдет на новый уровень, будет выявлен некоторый огромный, пока неизвестный вклад, который скомпенсирует огромную энергию квантовых флуктуаций. Можно сказать, что это почти единственная стратегия, придуманная физиками, чтобы укротить неконтролируемые результаты грубых вычислений. Именно поэтому многие теоретики пришли к выводу, что космологическая постоянная обязана быть равной нулю.
В суперсимметричных моделях возникает конкретный пример того, как можно осуществить этот сценарий. Вспомним из главы 4 (табл. 4.1), что суперсимметрия приводит к парам частиц и, следовательно, парам полей: электрон составляет пару частице, названной суперсимметричным электроном, или сэлектроном, для краткости; кварки и скварки; нейтрино и снейтрино и так далее. На данный момент все такие «счастицы» являются гипотетичными, но эксперименты на Большом адронном коллайдере могут изменить ситуацию в течение ближайших нескольких лет. Так или иначе, при математическом анализе квантовых флуктуаций, связанных с каждой парой полей, всплывает один интригующий факт. Для каждой флуктуации первого поля имеется соответствующая флуктуация его партнёра с такой же формой, но противоположным знаком, точно так же как в домашнем задании Арчи. Так же как в том примере, при сложении все такие вклады пара за парой сокращаются, и окончательный ответ оказывается равным нулю.[40]
Подвох, и достаточно серьёзный, в том, что полное сокращение происходит тогда, когда оба партнёра имеют не только одинаковые электрические и ядерные заряды (что так и есть), но и одинаковые массы. Но экспериментальные данные исключают такую возможность. Даже если в природе и есть суперсимметрия, из наблюдений следует, что она не может быть реализована в самой полной форме. Пока не открытые частицы (сэлектроны, скварки, снейтрино и тому подобное) должны быть значительно тяжелее своих известных партнёров — только так можно объяснить, почему они до сих пор не были обнаружены в экспериментах на ускорителях. При разных массах частиц симметрия нарушается, баланс разбалансирован, сокращения неполные; итоговое значение опять огромно.
В течение многих лет было выдвинуто множество подобных принципов и механизмов сокращения, но ни один из них не достиг цели доказать теоретически равенство нулю космологической постоянной. Но даже в этой ситуации большинство исследователей воспринимали данный факт просто как отражение неполноты нашего понимания физики, а не как ключ к тому, что наша вера в равенство нулю космологической постоянной была ошибочна.
Одним из физиков, отвергающим ортодоксальный взгляд на проблему, был нобелевский лауреат Стивен Вайнберг.[41]
В статье, опубликованной в 1987 году, более чем за десять лет до революционных данных по сверхновым, Вайнберг предложил альтернативный теоретический подход, приведший к радикально иному результату: малой,Космологическая антропность
Гелиоцентрическая модель солнечной системы Николая Коперника как ничто лучше доказывает, что мы, люди, отнюдь не центр Вселенной. Современные открытия упрочили этот урок, да ещё как! Теперь мы понимаем, что открытие Коперника всего лишь одно из череды доказательств, опровергающих столь долго лелеянные нами представления об особом статусе человечества: мы живём не в центре Солнечной системы, не в центре Галактики, не в центре Вселенной, мы даже не сделаны из тёмной материи, составляющей большую часть массы во Вселенной. Такое космическое понижение в статусе, от примы до статиста, является примером того, что учёные называют теперь