С возникновением в 70-х годах методик ДНК-секвенирования и генного сплайсинга новообразованные биотехнологические компании, прежде всего, обратились к медицинским приложениям генной инженерии. Основываясь на предположении, что гены определяют биологическую функцию, было естественно заключить, что первоначальные причины биологических расстройств следует искать в генетических мутациях. Соответственно, генетики поставили перед собой задачу точно определить гены, ответственные за конкретные заболевания. В случае удачи, думали они, мы научимся предотвращать и лечить «генетические» болезни, исправляя или заменяя дефектные гены.
Несмотря на то, что реальных терапевтических успехов подобных методик можно было ожидать лишь в отдаленном будущем, биотехнологические компании увидели в развитии генной терапии небывалые возможности для бизнеса и стали настойчиво пропагандировать свои генетические исследования в прессе. Год за годом броские заголовки газет и передовицы журналов бодро рапортовали об обнаружении новых «болезнетворных» генов и соответственно открывающихся терапевтических возможностях. Несколько недель спустя за ними, как правило, следовали опасения серьезных ученых, публиковавшиеся, однако, в виде небольших заметок в общей массе новостей.
Генетики вскоре обнаружили огромную дистанцию между умением идентифицировать гены, участвующие в развитии болезни, и возможностью определить их точную функцию, не говоря уже о перспективах манипулирования ими для получения желаемого результата. Как мы теперь знаем, дистанция эта – прямое следствие несоответствия линейных причинно-следственных цепочек, выстраиваемых генетическим детерминизмом, характеру нелинейных эпигенетических сетей биологической реальности.
Сам пресловутый термин «генная инженерия» подразумевает, что манипулирование генами – это конкретная и полностью понятная механическая процедура. В самом деле, именно так ее обычно и преподносит популярная пресса. Как пишет биолог Крейг Холдридж:
Мы слышим о том, как гены
Действительное же положение вещей в генной инженерии, увы, куда менее радужно. На нынешнем этапе ее развития ученые еще не умеют контролировать происходящее в организме. Они могут внедрить ген в клеточное ядро при помощи соответствующего вектора, но они никогда не знают ни того, встроит ли клетка его в свою ДНК, ни того, где он будет локализован, ни того, к каким изменениям это приведет в организме. В результате генная инженерия продвигается вперед методом проб и ошибок чрезвычайно расточительным образом. Доля успеха в генетических экспериментах составляет всего лишь около одного процента, поскольку тот живой контекст организма-хозяина, который этот успех определяет, оказывается, по большей части, недоступен инженерному мышлению, составляющему основу нынешних биотехнологий.56
«Генная инженерия, – пишет биолог Дэвид Эренфельд, – основывается на предположении, что мы можем взять ген у вида А, где он делает что-то полезное, и передать его виду Б, где он станет делать то же самое. Большинство генных инженеров знают, что это не всегда верно, но биотехнологическая индустрия в целом действует так, будто это бесспорно».57
Эренфельд отмечает, что указанная предпосылка сталкивается с тремя основными трудностями.Во-первых, экспрессия гена зависит от генетического и клеточного окружения (т. е. всей эпигенетической сети) и может изменяться, когда он оказывается в иной среде. «Раз за разом, – пишет биолог Ричард Штроман, – мы наблюдаем, что гены, связанные с заболеванием у мыши, не обнаруживают такой связи в организме человека… Таким образом, оказывается, что мутации даже ключевых генов оказывают либо не оказывают влияние на болезнь в зависимости от генетического окружения, в котором они имеют место».58