The heart of the U-2 were hatches in the equipment, or Q, bay that would house two high-resolution cameras, one a special long-focal-length spotting camera able to resolve objects two to three feet across from a height of seventy thousand feet, and the other a tracking camera that would produce a continuous strip of film of the whole flight path. The two cameras weighed 750 pounds. Kelly and Dr. Land argued constantly about each other’s needs to dominate the relatively small space inside those bays. Kelly needed room for batteries; Land needed all the room he could get for his bulky folding cameras. Kelly’s temper flashed at Land: “Let me remind you, unless we can fly this thing, you’ve got nothing to take pictures of.” In the end they compromised.
My principal work was on the engine’s air intake, which had to be designed and constructed with absolute precision to maximize delivery of the thin-altitude air into the compressor face. Up where the U-2 aimed to cruise, just south of the Pearly Gates, the air was so thin that an oxygen molecule was about as precious as a raindrop on the Mojave desert. So the intakes had to be extremely efficient to suck in the maximum amount of oxygen-starved air for compression and burning. The real crunch was building a reliable engine for flying at the top of the stratosphere and finding special fuel that could operate effectively with so little oxygen. Pratt & Whitney built the highest-pressure-ratio engine available at that time, their J57 engine, which Kelly hoped could somehow be adopted for the U-2. He had met with Bill Gwinn, the head of Pratt & Whitney, at the company’s main plant in Hartford, Connecticut.
“Bill,” he said, “I need to fly at seventy thousand feet.” Gwinn scratched his head. “We’ve never come close to that height, Kelly. I have no idea what’s the fuel consumption and thrust needed to get up that high.”
He put his best people to work on the problem. They were modifying most of the J57’s innards—the alternator, oil cooler, hydraulic pump, and other key parts for extreme-altitude flying. The two-spool compressor and three-stage turbine were being hand-built. Even with these modifications, the engine would be able to produce only 7 percent of its takeoff sea-level thrust at seventy thousand feet. The U-2 would be flying where outside temperatures would be minus 70 degrees F, causing standard military JP-4 kerosene fuel to freeze or boil off due to low atmospheric pressures. So Kelly turned to retired General Jimmy Doolittle, who was a key Eisenhower adviser on military and intelligence matters, as well as a board member of Shell Oil. Doolittle put the muscle on Shell to develop a special low-vapor kerosene for high altitudes. The fuel was designated LF-1A. The rumor about the LF abbreviation was that it stood for “lighter fluid.” The stuff smelled like lighter fluid, but a match wouldn’t light it. Actually, it was very similar in chemistry to a popular insecticide and bug spray of that era known as Flit. Once our airplane became operational, Shell diverted tens of thousands of gallons of Flit to make LF-1A in the summer of 1955, triggering a nationwide shortage of bug spray.
Kelly suffered stress headaches worrying about the engine and fuel performance at such incredible altitudes. Several of our own engineers were dubious that a conventional jet engine could ever be made to function properly in a realm where experimental ramjets had flown for only minutes at blistering supersonic speeds. That kind of tremendous brute power was necessary to gulp down enormous quantities of oxygen-thin air. All of us worried about what would happen if the engine died above Russia, forcing the pilot to glide to lower altitudes to restart, placing him in range of Soviet missiles and fighters.
I had never before worked with so much intensity and camaraderie. Very quickly forty-five-hour workweeks would seem a luxury. We began logging sixty- to seventy-hour workweeks to meet the schedule. I had begun by reviewing the work of my predecessor, who I thought had done a competent job. But I quickly learned that Kelly had blind spots about certain people that could never be changed. For instance, I observed that he was particularly harsh in his dealings with a couple of engineers whom I considered to be extraordinarily good, and in my youthful naivete it never dawned on me that there might have been jealousy at play. Kelly was so hands-on that I quickly lost self-consciousness around him, although that was certainly not true of most others. I actually observed guys flushing and breaking out in a nervous sweat every time they had to deal with him—even several times a morning.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное