Читаем Сквозь зеркало языка полностью

Люди могут видеть свет только на узком отрезке длины волн от 0,4 до 0,7 микрон (тысячных долей миллиметра), или, чтобы быть более точными, между примерно 380 и 750 нанометров (миллионных долей миллиметра). Свет на этих длинах волн поглощается клетками сетчатки, тонкой пластины нервных клеток, которые выстилают внутреннюю часть глазного яблока. На задней стороне сетчатки есть слой фоторецепторных клеток, которые поглощают свет и посылают нервные сигналы, а они, в свою очередь, преобразуются в цветовые ощущения в мозгу.[299]

Когда мы видим радугу или свет, выходящий из призмы, наше восприятие цвета как будто изменяется так же непрерывно, как меняется длина волны (см. таб. 2 и 11 на цветной вклейке). Ультрафиолетовый свет на длинах волн короче 380 нм не виден глазу, но когда длина волны возрастает, мы воспринимаем оттенки фиолетового, примерно с 450 нм мы видим синий, с 500 нм зеленый, с 570 желтый, с 590 оранжевые тона, а потом, когда длина волн начинает превышать 620 нм, мы видим красный на всем протяжении шкалы до 750 нм, дальше наша чувствительность заканчивается и начинается инфракрасный свет.

«Чистый» свет одной длины волны (в отличие от комбинации источников света с разными длинами волн) называется монохроматическим. Естественно предположить, что когда источник света выглядит для нас желтым, это потому, что он состоит только из волн длиной около 580 нм, как монохроматический желтый свет в радуге. И так же естественно предположить, что когда некий объект кажется нам желтым, это должно означать, что он отражает свет только на длинах волн вокруг 580 нм и поглощает свет всех остальных длин волн. Но оба этих предположения совершенно неверны. На самом деле цветное зрение – это иллюзия, которую создают для нас нервная система и мозг. Чтобы воспринять свет как желтый, нам необязательно нужен свет на волне 580 нм. Мы можем получить такое же «желтое» ощущение, если чисто-красный свет на длине 620 нм и чисто-зеленый на 540 нм налагаются друг на друга в равном количестве. Другими словами, наши глаза не могут отличить монохроматический желтый свет и сочетание монохроматических красного и зеленого светов. В самом деле, экран телевизора ухитряется обманом заставить нас воспринимать любые цвета спектра, используя разные комбинации всего трех монохроматических цветов – красного, зеленого и синего. Наконец, объекты, которые кажутся нам желтыми, очень редко отражают только свет длиной около 580 нм, а чаще всего отражают зеленый, красный и оранжевый, так же, как и желтый. Как это можно объяснить?

До XIX века ученые пытались понять этот феномен «цветовой подгонки» через какие-то физические свойства самого света. Но в 1801 году английский физик Томас Юнг предположил в своей знаменитой лекции, что объяснение лежит не в свойствах света, а скорее в строении человеческого глаза. Юнг разработал «трихроматическую» теорию зрения: он утверждал, что в глазу есть только три вида рецепторов, каждый из которых особенно чувствителен к свету в своей области спектра. Таким образом, наше субъективное ощущение непрерывности цвета создается тогда, когда мозг сравнивает ответы от этих трех типов рецепторов. Теория Юнга была усовершенствована в 1850-х Джеймсом Клерком Максвеллом, а в 1860-х Германном фон Гельмгольцем, и она до сих пор служит основой для того, что мы сегодня знаем о функционировании сетчатки.

Цветное зрение основано на трех типах светопоглощающих пигментных молекул, называемых колбочками, которые содержатся в клетках сетчатки. Эти три типа клеток известны как длинноволновые, средневолновые и коротковолновые колбочки. Колбочки поглощают фотоны и посылают сигнал о количестве фотонов, поглощенном за единицу времени. Коротковолновые колбочки имеют пик чувствительности в области 425 нм – это на границе фиолетового и синего. Это не значит, что эти колбочки поглощают фотоны только на 425 нм. Как можно видеть на диаграмме на противоположной странице (и на таб. 12 на цветной вклейке), коротковолновые колбочки поглощают свет на разных длинах волны, от фиолетовых до синих и даже какой-то части зеленых. Но их чувствительность к свету снижается, когда длина волны уходит от оптимума в 425 нм. Поэтому, когда монохроматический зеленый свет на 520 нм достигает коротковолновых колбочек, поглощается значительно меньший процент фотонов по сравнению со светом на 425 нм.

Перейти на страницу:

Все книги серии Наука XXI век

Неизведанная территория
Неизведанная территория

Насколько велики на самом деле «большие данные» – огромные массивы информации, о которых так много говорят в последнее время? Вот наглядный пример: если выписать в линейку все цифры 0 и 1, из которых состоит один терабайт информации (вполне обычная емкость для современного жесткого диска), то цепочка цифр окажется в 50 раз длиннее, чем расстояние от Земли до Сатурна! И тем не менее, на «большие данные» вполне можно взглянуть в человеческом измерении. Эрец Эйден и Жан-Батист Мишель – лингвисты и компьютерные гении, создатели сервиса Google Ngram Viewer и термина «культуромика», показывают, каким образом анализ «больших данных» помогает исследовать трудные проблемы языка, культуры и истории.

Жан-Батист Мишель , Эрец Эйден

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду
Неразумная обезьяна. Почему мы верим в дезинформацию, теории заговора и пропаганду

Дэвид Роберт Граймс – ирландский физик, получивший образование в Дублине и Оксфорде. Его профессиональная деятельность в основном связана с медицинской физикой, в частности – с исследованиями рака. Однако известность Граймсу принесла его борьба с лженаукой: в своих полемических статьях на страницах The Irish Times, The Guardian и других изданий он разоблачает шарлатанов, которые пользуются беспомощностью больных людей, чтобы, суля выздоровление, выкачивать из них деньги. В "Неразумной обезьяне" автор собрал воедино свои многочисленные аргументированные возражения, которые могут пригодиться в спорах с адептами гомеопатии, сторонниками теории "плоской Земли", теми, кто верит, что микроволновки и мобильники убивают мозг, и прочими сторонниками всемирных заговоров.В формате PDF A4 сохранен издательский макет книги.

Дэвид Роберт Граймс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Антирак груди
Антирак груди

Рак груди – непонятная и пугающая тема. Суровые факты шокируют: основная причина смерти женщин от 25 до 75 лет – различные формы рака, и рак молочной железы – один из самых смертоносных. Это современное бедствие уже приобрело характер эпидемии. Но книга «Антирак груди» написана не для того, чтобы вы боялись. Напротив, это история о надежде.Пройдя путь от постановки страшного диагноза к полному выздоровлению, профессор Плант на собственном опыте познала все этапы онкологического лечения, изучила глубинные причины возникновения рака груди и составила программу преодоления и профилактики этого страшного заболевания. Благодаря десяти факторам питания и десяти факторам образа жизни от Джейн Плант ваша жизнь действительно будет в ваших руках.Книга также издавалась под названием «Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников».

Джейн Плант

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука