Мутантный ген бобра — это всего-навсего замена одной буквы в тексте, состоящем из миллиардов букв, замена в одном конкретном гене G
. По мере того как бобренок растет и развивается, это изменение копируется во все его клетки вместе со всеми остальными буквами этого текста. В большинстве клеток ген G не считывается — там считываются другие гены, характерные для клеток соответствующих типов. Тем не менее в некоторых клетках развивающегося мозга G считывается и переписывается в виде копий РНК. Эти рабочие копии болтаются во внутриклеточном растворе, пока некоторые из них не наткнутся на специальные машины по производству белка, называемые рибосомами. Рибосомы расшифровывают записанные в РНК рабочие планы и производят новые молекулы белка в соответствии с ними. Эти молекулы белка сворачиваются, принимая строго определенную форму, заданную их аминокислотной последовательностью, которая, в свою очередь, обусловлена кодирующей последовательностью ДНК гена G. Замена буквы, происходящая при мутации гена G, вносит в аминокислотную последовательность, обычно кодируемую этим геном, существенное изменение, влияющее и на ту форму, которую молекула белка приобретает при свертывании.Машины для производства белка в развивающихся клетках мозга начинают массовый выпуск таких слегка модифицированных белковых молекул. Эти молекулы и сами являются машинами — ферментами, производящими другие вещества, которые тоже входят в состав данной клетки и тоже являются результатом деятельности гена G
. Эти продукты его деятельности направляются в мембрану, которая окружает клетку, и принимают участие в процессе образования связей между этой клеткой и соседними клетками. Из-за небольшого искажения в подлиннике инструкции ДНК интенсивность выработки некоторых компонентов мембраны изменилась. А это повлекло за собой изменение того, каким именно образом некоторые из клеток в развивающемся мозге будут соединены друг с другом. В определенной части головного мозга бобра произошла едва заметная модификация монтажной схемы — косвенное и, что ни говори, очень отдаленное последствие изменения в тексте ДНК.И вот оказывается, что именно эта часть мозга вследствие своего местоположения в общей монтажной схеме принимает участие в строительном поведении нашего бобра. Разумеется, когда бобр строит свою плотину, в этом процессе задействованы многие участки мозга, однако, после того как мутация гена G
затрагивает данную конкретную часть общей схемы, это отражается на поведении специфическим образом. А именно заставляет бобра держать голову выше над водой, когда он плывет с зажатым в зубах сучком. Под “выше” имеется в виду выше по сравнению с бобром без такой модификации. Это немного снижает вероятность того, что грязь, прилипшая к сучку, смоется во время плавания. А это увеличивает липкость сучка, что, в свою очередь, увеличивает вероятность того, что, когда бобр засунет сучок в плотину, этот сучок там останется. Это рассуждение будет в большей или меньшей степени применимо ко всем сучьям и бревнам, перемещаемым бобром — носителем данной мутации. Повышенная липкость сучьев будет следствием — опять-таки чрезвычайно косвенным — буквенной замены в тексте ДНК.Увеличение липкости бревен сообщит плотине дополнительную прочность, сделает ее устойчивее к разрушению. Что, в свою очередь, увеличит размер запруды и сделает хатку, расположенную в центре запруды, более защищенной от хищников. Это повысит вероятность того, что наш бобр благополучно вырастит большее число потомков. Рассматривая всю популяцию бобров целиком, мы увидим, что те бобры, которые обладают таким мутантным геном, в среднем выращивают больше потомства, чем те, у кого этого гена нет. А потомство будет с высокой вероятностью наследовать архивные копии этого же мутантного гена от своих родителей. Следовательно, данная разновидность гена будет с течением поколений становиться все более многочисленной. В конце концов она станет нормой, и называть ее “мутантной” будет неправомерно. Бобровые плотины, если говорить в целом, сделают очередной маленький рывок в сторону усовершенствования.