Читаем Слово о карте полностью

Он представляет собой совокупность нескольких линейных масштабов, каждый из которых начерчен для соответствующего частного масштаба карты по различным параллелям. На нашем чертеже такие масштабы построены через 20° по широте. Нижняя горизонтальная линия соответствует масштабу на экваторе, следующая за нею — частному масштабу на параллели 20° и т. д. Отдельные точки масштаба соединяются плавными кривыми, что дает возможность измерять по масштабу длины линий, лежащих на промежуточных широтах.

Карта позволяет ответить и на такие вопросы, как, например, сколько гектаров занимает озеро, на какой площади раскинулся город и т. п. Наиболее просто и быстро площадь по карте можно определить графическим путем. На контуре, в пределах которого требуется определить площадь, на глаз строят равновеликий прямоугольник (рис. 38, а).

Рис. 38. Схема определения площади: а — построением равновеликого прямоугольника; б — точечной палеткой.


Измерив его основание а и высоту b и перемножив одно на другое, получим площадь фигуры. Для более точных определений фигуру разбивают на сеть прямоугольников, квадратов и треугольников. Площадь каждого из них вычисляют по известным правилам геометрии. Сумма площадей отдельных фигур даст общую площадь, заключенную в контуре.

Очень удобно определять площадь по сетке квадратов, нанесенной на прозрачную бумагу или пленку. Стороны квадратов должны быть такими, чтобы каждый из них соответствовал целому числу гектаров или квадратных километров. Так, для карт масштабов 1:25 000, 1:250 000 и 1:2 500 000 квадрат вычерчивают со стороной 4 мм. Для первой карты один квадрат будет соответствовать 1 га, для второй — 1 км2 и для третьей — 100 км2. Накладывая такую сетку на карту, подсчитывают число квадратов, покрывающих площадь, причем доли квадратов определяют на глаз.

Вместо сетки квадратов можно ограничиться только точками, отмеченными в вершинах квадратов (рис. 38, б). Количество точек в пределах контура будет соответствовать числу квадратов, и здесь уже не нужно подсчитывать число долей квадратов. В нашем случае на изображение контура попало 45 точек, значит, площадь, заключенная в нем, составляет 45 км2.

Для точного измерения площадей применяют специальный прибор — планиметр. Простейший планиметр-топорик можно легко изготовить самому. Он состоит из металлического стержня, согнутого в виде широкой буквы П (рис. 39).

Рис. 39. Схема измерения площади планиметром-топориком.


Один конец инструмента расплющивается в виде топорика, а другой — ведущий конец заостряется в иглу. Для правильного измерения площади необходимо, чтобы острие иглы лежало в плоскости, проходящей через лезвие топорика; во время работы инструмент должен быть в вертикальном положении.

Для определения площади какой-либо фигуры намечают на глаз ее центр тяжести — точку О и соединяют ее с точкой М, находящейся на контуре. Планиметр ставят острием в точку О и слегка нажимают на топорик, чтобы получить след на бумаге А. Затем иглой обводят занимаемую площадь, сначала по прямой ОМ до контура, далее делают полный оборот по контуру до точки М и, наконец, снова возвращаются в исходную точку О. После этого легким нажимом фиксируют на бумаге новое положение топорика В. Площадь, ограниченная контуром, равняется произведению длины планиметра АО на расстояние АВ между начальным и конечным положениями топорика: s = AO·АВ.

Для уточнения результата и исключения ошибки от несовпадения точки О с центром тяжести фигуры надо повернуть инструмент на 180° и сделать новый обвод в противоположном направлении. За окончательный результат принимают среднее из двух значений. Планиметр-топорик очень прост в работе и может с успехом применяться для измерения площадей с точностью, не превышающей 2–3 %.

На мелкомасштабных обзорных картах, которые содержат большие искажения, площади можно определять по клеткам картографической сетки. Размеры площадей клеток выбирают из таблиц, которые можно найти почти в каждом географическом атласе, например в атласе для учителей. Частично занятые клетки, так называемые до-мерки, оценивают на глаз с точностью до десятых долей. Для большей точности клетки картографической сетки делят на более мелкие с таким расчетом, чтобы их площади можно было найти в таблицах.

Кратчайший путь на глобусе и карте

Мы знаем, что кратчайший путь между какими-либо двумя точками проходит по дуге большого круга, которая называется ортодромией. Ее можно построить с помощью глобуса. К намеченным на нем пунктам прикладывают нить, которая и соответствует ортодромии — дуге большого круга. Для переноса ее на карту определяют широты и долготы точек пересечения ортодромии с меридианами или параллелями. Запись координат можно вести в табличной форме. Дадим ее, например, для трассы Москва — Гавана.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже