Читаем Смерть в черной дыре и другие мелкие космические неприятности полностью

Древние греки (в том числе Пифагор и Геродот) заметили, что концепция плоской Земли не лишена недостатков, и задумались, что Земля все же может быть сферой. В IV веке до н. э. Аристотель, великий систематизатор знаний, привел несколько доводов в поддержку этой гипотезы. Один из них – лунные затмения. Луна, обходя вокруг Земли, регулярно попадает в коническую тень, которую Земля отбрасывает в пространство. Аристотель наблюдал это зрелище десятилетиями – и отметил, что тень Земли на Луне неизменно круглая. А такое может быть лишь в том случае, когда Земля представляет собой сферу, поскольку только сфера отбрасывает круглую тень всегда, где бы ни находился источник падающего на нее света. Если бы Земля была плоским диском, тень иногда становилась бы овальной. А когда Земля оказывалась бы к Солнцу краем, тень превращалась бы в тонкую линию. Круг получался бы только тогда, когда Земля была бы к Солнцу «лицом». Уже один этот аргумент обладал такой силой, что, казалось бы, уже в ближайшие столетия картографы должны были изготовить сферическую модель Земли. Но нет. Первый глобус ждал своего часа до 1490–1492 года – до зари великих географических открытий и великой колонизации.

* * *

Хорошо, договорились, Земля – шар. Однако дьявол, как всегда, кроется в деталях. В своих «Началах» (1687) Ньютон высказал предположение, что поскольку вещество, из которого состоят вращающиеся сферические тела, при вращении подвергается центробежной силе, наша планета, как, впрочем, и все остальные, должна быть приплюснута у полюсов и слегка выпукла по экватору: эта форма называется сплюснутым сфероидом. Полвека спустя Французская академия наук, чтобы проверить гипотезу Ньютона, отправила математиков в две экспедиции – одну на Полярный круг, другую на экватор – с заданием измерить длину одного градуса широты по поверхности Земли на одной и той же долготе. На Полярном круге градус оказался немного длиннее, и такое могло быть только если Земля и правда приплюснута. Ньютон был прав.

Чем быстрее вращается планета, тем больше должна быть ее выпуклость по экватору. Юпитер, самая массивная планета в Солнечной системе, вращается очень быстро, сутки на нем длятся 10 земных часов, и Юпитер у экватора на 7 % шире, чем у полюсов. Наша Земля гораздо меньше, и сутки на ней длятся 24 часа, поэтому у экватора она шире всего на 0,3 % – при диаметре около 12 700 км разница составляет всего 44 км. Не о чем даже и говорить.

Из этой легкой сплющенности есть одно интересное следствие: если встать на экваторе даже на уровне моря, окажешься дальше от центра Земли, чем в любом другом месте на Земле. А если хочешь сделать все правильно, надо забраться на гору Чимборасо в центральном Эквадоре, неподалеку от экватора. Вершина Чимборасо возвышается над уровнем моря на 6300 м, но главное – она на 2 с лишним километра дальше от центра Земли, чем вершина горы Эверест.

* * *

Из-за спутников все, как ни странно, только запуталось. В 1958 году маленький космический аппарат «Авангард-1» сообщил нам поразительную новость: оказывается, экваториальная выпуклость к югу несколько больше, чем к северу. Мало того, уровень моря на Южном полюсе, как выяснилось, чуть-чуть ближе к центру Земли, чем уровень моря на Северном полюсе. Иначе говоря, наша планета – груша.

За этим последовал еще один обескураживающий факт: Земля, оказывается, меняет форму. Ее поверхность каждый день вздымается и опадает, когда океаны, влекомые притяжением Луны и – в меньшей степени – Солнца, накатываются на континентальные шельфы, а затем отступают. Приливные силы влияют на воду во всем мире, делают поверхность океанов слегка выпуклой. Это давно известный феномен. Однако приливные силы растягивают и твердую землю, так что экваториальный радиус изо дня в день, из месяца в месяц то увеличивается, то сокращается – в ритме океанских приливов и отливов и фаз Луны.

То есть Земля – грушевидный сплюснутый сфероид, который еще и крутит обруч.

Неужели эти уточнения никогда не кончатся? Возможно, и не кончатся. Перемотаем пленку вперед, на 2002 год. Американо-германская космическая программа под названием GRACE (Gravity Recovery and Climate Experiment, «Эксперимент по исследованию гравитации и климата») запустила пару спутников, чтобы уточнить модель геоида Земли – то есть выяснить, какую форму имела бы Земля, если бы на уровень моря не влияли ни океанские течения, ни приливы и отливы, ни погода, иначе говоря, какова была бы гипотетическая поверхность Земли, если бы сила тяжести в каждой точке была строго перпендикулярна. Таким образом, геоид воплощает истинную горизонталь, полностью учитывающую все вариации формы Земли и плотность вещества под ее поверхностью. А плотникам, геодезистам и разработчикам акведуков придется подчиняться, ничего не попишешь.

* * *

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература