Пи – не целое число, оно обладает бесконечной последовательностью неповторяющихся десятичных знаков; если оборвать эту последовательность так, чтобы в нее вошли все арабские цифры, получится 3,14159265358979323846264338327950. В любые времена, при любом месте жительства и национальности, в любом возрасте и при любых эстетических предпочтениях, при любом вероисповедании и любых политических пристрастиях, будь ты хоть республиканец, хоть демократ, стоит подсчитать число пи – и получишь тот же ответ, что и кто угодно другой во всей Вселенной. Постоянные вроде пи обладают таким уровнем глобализации, о какой человеку и мечтать нечего, мы его все равно никогда не достигнем – и именно поэтому, если людям когда-нибудь придется налаживать коммуникацию с инопланетянами, общение, скорее всего, пойдет на языке математики, космическом «лингва франка».
Итак, число пи мы называем иррациональным. Его нельзя представить в виде дроби двух целых чисел – наподобие 2/3 или 18/11. Однако математики древности, не подозревавшие о существовании иррациональных чисел, определяли число пи приблизительно в виде дробей – 25/8 (вавилоняне, около 2000 г. до н. э.) или 256/81 (египтяне, около 1650 г. до н. э.) Затем, уже около 250 г. до н. э., греческий математик Архимед, проделав трудоемкие геометрические построения, нашел не одну дробь, а две – 223/71 и 22/7. Архимед понимал, что точное значение пи, которое сам он не сумел найти, лежит где-то посередине.
В Библии также содержится примерная оценка числа пи – если учесть научные достижения того времени, можно сказать, довольно грубая. При описании убранства храма царя Соломона читаем: «И сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое, вышиною в пять локтей, и снурок в тридцать локтей обнимал его кругом» (III Царств, 7:23). То есть диаметр составлял 10 единиц, а окружность 30 – такое могло быть лишь в том случае, если бы пи равнялось трем. Прошло три тысячи лет, и в 1897 году нижняя палата законодательного органа штата Индиана издала законопроект, согласно которому в «Штате верзил», как принято называть Индиану, «диаметр и окружность относятся как пять четвертей к четырем» – то есть число пи в точности равно 3,2.
Однако оставим в стороне законодателей, которые были зациклены на десятичных дробях. Даже величайшие математики, в том числе великий персидский ученый IX века Мухаммад ибн Муса аль-Хорезми, чье имя увековечено в слове «алгоритм», и даже сам Ньютон, упорно пытались повысить точность вычисления пи. Разумеется, огромный рывок в решении этой задачи был достигнут с появлением электронных вычислительных машин, то есть компьютеров. К началу XXI века количество известных цифр числа пи перешло отметку в триллион, превысив точность, необходимую для любого мыслимого применения этого числа в физике, если не считать исследования, будет ли когда-нибудь эта последовательность похожа на случайную (фанаты числа пи интересуются даже этим).
Ньютон внес в науку куда более существенный вклад, нежели вычисление числа пи: это, конечно, три фундаментальных закона движения и один закон всемирного тяготения. Все четыре закона впервые были сформулированы в основополагающем труде Ньютона «Philosophiae Naturalis Principia Mathematica» или просто «Principia» («Начала»), увидевшем свет в 1687 году.
До «Начал» Ньютона ученые, занимавшиеся наукой, которая тогда называлась «механика», а впоследствии – «физика», просто описывали, что видели, уповая на то, что в следующий раз все произойдет примерно так же. Однако, вооружившись ньютоновыми законами движения, они получили возможность описывать соотношения между силой, массой и ускорением при любых условиях. В науке появилась предсказуемость. Как и в жизни в целом.
В отличие от первого и третьего законов, второй закон Ньютона представляет собой уравнение:
В переводе на простой человеческий язык это означает, что равнодействующая сила