Читаем Смерть в черной дыре и другие мелкие космические неприятности полностью

Сам акт научного открытия отнюдь не предполагает, что ты либо заранее, либо пост-фактум знаешь, что именно открыл. Так было и с микроволновым реликтовым излучением, так происходит и сейчас с гамма-всплесками. Как мы увидим в части VI, в гамма-окно видны загадочные всплески высокоэнергичных гамма-лучей, разбросанные по всему небу. Их удалось открыть благодаря космическим гамма-телескопам, но происхождение и причина этих всплесков пока остаются неизвестными.

Если обобщить понятие зрения и включить в него и детектирование субатомных частиц, нельзя не упомянуть о нейтрино. Неуловимое нейтрино – это субатомная частица, которая образуется каждый раз, когда протон превращается в нейтрон и позитрон, антивещественный партнер электрона. Казалось бы, какое-то волшебство, а тем не менее этот процесс происходит в ядре Солнца примерно сто миллиардов миллиардов миллиардов миллиардов (1038) раз в секунду. Затем нейтрино преспокойно покидают Солнце – будто его и нет. Нейтринный «телескоп» позволил бы прямо заглянуть в солнечное ядро, рассмотреть непрерывно происходящий там термоядерный синтез, о котором ни одна полоса электромагнитного спектра ничего не скажет. Однако поймать нейтрино необычайно трудно, поскольку они практически не взаимодействуют с веществом, так что хороший и эффективный нейтринный телескоп – это пока что лишь мечта, возможно, и недостижимая.

Когда мы научимся регистрировать гравитационные волны – это еще одно пока не открытое окно во Вселенную, – то сможем распознавать космические катастрофы. Однако сейчас, когда я пишу эти строки, гравитационные волны, существование которых как ряби на ткани пространства-времени было предсказано еще в 1916 году в рамках общей теории относительности Эйнштейна, пока что не зарегистрированы ни от одного источника. Физики из Калифорнийского технологического института разрабатывают особый детектор гравитационных волн, который состоит из двух вакуумных труб длиной по 4 километра, соединенных под прямым углом. В трубах находятся лазеры. Если мимо проходит гравитационная волна, путь света в одной из труб будет на время чуть-чуть отличаться по длине от пути света в другой трубе. Этот эксперимент известен как LIGO – Лазерно-интерферометрическая гравитационно-волновая обсерватория. Чувствительности установки хватит, чтобы регистрировать гравитационные волны от звезд, столкнувшихся более чем в 100 миллионах световых лет от нас. Легко представить себе, что настанут времена, когда гравитационные события во Вселенной – столкновения, взрывы, коллапс звезд – будут рутинно наблюдаться при помощи подобных устройств. Более того, когда-нибудь нам, возможно, удастся распахнуть это окно пошире, заглянуть за матовую завесу микроволнового реликтового излучения – и увидеть само начало времен.

Глава семнадцатая

Космос в цвете

Лишь у считанных объектов на ночном небосклоне Земли хватит яркости, чтобы возбудить чувствительные к цвету колбочки – клетки нашей сетчатки. На это способна, например, красная планета Марс. И голубая звезда-сверхгигант Ригель (правое колено Ориона), и красная звезда-сверхгигант Бетельгейзе (левая подмышка Ориона). Однако помимо этих выдающихся светил ничего, пожалуй, и не назовешь. Невооруженному глазу космос предстает темным и бесцветным.

Вселенная являет свои подлинные цвета, лишь если нацелить на нее большие телескопы. Светящиеся объекты вроде звезд бывают трех основных цветов – красные, белые и голубые; наверное, этот факт порадовал бы отцов-основателей. Межзвездные газовые облака могут быть практически любых цветов в зависимости от того, какие в них присутствуют химические элементы, а также от того, как их фотографируют, а вот цвет звезды прямо зависит от температуры на поверхности. Холодные звезды красные. Теплые звезды белые. Горячие звезды голубые. Очень горячие звезды все равно голубые. А очень-очень-очень горячие – ну, вроде центра Солнца, где 15 миллионов градусов? Голубые. Для астрофизика и раскаленная докрасна кочерга, и накаленная добела обстановка – понятия, требующие серьезного уточнения.

Казалось бы, все просто. Но так ли это?

В результате сговора между астрофизическими законами и человеческой физиологией зеленые звезды оказались запрещены. А как же желтые звезды? Некоторые учебники астрономии, многие научно-фантастические романы и рассказы и практически любой прохожий на улице поддерживают движение «За желтое Солнце». Однако профессиональные фотографы руку дадут на отсечение, что Солнце голубое: пленка для съемки «при дневном свете» сбалансирована по цветам с расчетом на то, что источник света – по всей видимости, Солнце – испускает голубой свет. Старомодные фотовспышки в виде кубиков из синих ламп – всего лишь одна из множества попыток воссоздать голубой солнечный свет при съемке в закрытом помещении с использованием пленки для дневного света. А художники-пейзажисты возразят, что Солнце чисто-белое и тем самым позволяет им точно видеть цвета выбранных

красок.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература