Читаем Смерть в черной дыре и другие мелкие космические неприятности полностью

В термоядерных реакторах, где за плазмой наблюдают с безопасного расстояния, мы пытаемся на высокой скорости столкнуть ядра водорода и превратить их в более тяжелые ядра гелия. При этом мы высвобождаем энергию, которой могло бы хватить на удовлетворение потребности общества в электричестве. Беда в том, что мы еще не преуспели в том, чтобы получать больше энергии, чем вкладываем. Чтобы добиться столкновения на столь высоких скоростях, сгусток атомов водорода нужно разогреть до десятков миллионов градусов. В такой обстановке нечего и надеяться, что электроны останутся в атомах. При таких температурах все электроны вырываются из своих атомов водорода и отправляются в свободное плавание. Как же удержать сияющий шар водородной плазмы при температуре в миллионы градусов? В какой емкости хранить? Пластиковый контейнер для микроволновки тут не подойдет, даже дорогой и фирменный. Нужна такая бутылка, которая не расплавится, не распадется, не испарится. Мы уже упоминали о том, что можно воспользоваться в своих интересах отношениями между плазмой и магнитным полем и создать своего рода «бутылку», стенки которой состоят из мощных магнитных полей, за которые плазма не в состоянии просочиться. Экономическая выгода от хорошего термоядерного реактора отчасти зависит от устройства его магнитной бутылки и от того, насколько правильно мы понимаем, как взаимодействует с ней плазма.

Почетное место среди самых экзотических искусственных состояний вещества занимает недавно выделенная кварк-глюонная плазма, созданная учеными в Брукхейвенской национальной лаборатории – в ускорителе частиц, расположенном на Лонг-Айленде в Нью-Йорке. Кварк-глюонная плазма состоит не из атомов, лишившихся электронов, а из смеси самых фундаментальных составляющих вещества – кварков с дробным зарядом и глюонов, которые обычно скрепляют их вместе, создавая протоны и нейтроны как таковые. Эта необычная разновидность плазмы сильно напоминает состояние Вселенной спустя долю секунды после Большого Взрыва. Примерно тогда вся наблюдаемая Вселенная уместилась бы в 26-метровую сферу в Роузовском Центре Земли и Космоса. На самом деле вся Вселенная до последнего кубического сантиметра находилась в состоянии плазмы еще почти 400 000 лет после Большого Взрыва. К этому времени Вселенная остыла от триллионов градусов до нескольких тысяч. Все это время свободные электроны плазменной Вселенной рассеивали свет направо и налево – это очень напоминает состояние, в котором пребывает свет, когда проходит сквозь матовое стекло или сквозь недра Солнца. Ни там ни там свет не может пройти, не рассеявшись, так что обе эти среды светопроницаемы, но не прозрачны. Остыв ниже нескольких тысяч градусов, Вселенная уже создала такие условия, что каждый электрон в космосе мог соединиться с одним атомным ядром, и так получились полноценные атомы водорода и гелия. Как только каждый электрон нашел себе дом, Вселенная вышла из состояния плазмы. Так продолжалось сотни миллионов лет, по крайней мере, до возникновения квазаров, чьи центральные черные дыры лакомятся газовыми смерчами. Перед тем как упасть в черную дыру, газ испускает ионизирующий ультрафиолетовый свет, который расходится по Вселенной и прилежно выбивает электроны обратно из атомов. До появления квазаров Вселенная пережила один-единственный период в своей истории (и прошлой, и будущей), когда плазмы в ней не было. Этот период мы называем Темными веками и считаем временем, когда гравитация тихо и незаметно собирала вещество в огромные шары, которые затем разогревались и превращались в первое поколение звезд, снова состоящих из плазмы.

Глава девятнадцатая

Лед и пламень

Когда Коул Портер в 1948 году сочинил шлягер «Ну и жарища» («Too Darn Hot») для своего бродвейского мюзикла «Целуй меня, Кэт», то жаловался в этой песенке на температуру не выше 35–40 градусов по Цельсию. Если воспользоваться стихами Портера как руководством по выбору верхнего предела температуры для приятных занятий любовью, вреда от этого не будет. Если сопоставить это с тем, что делает с эротическими порывами обычного человека холодный душ, получится вполне приличная оценка того, как узок диапазон приемлемых температур для нагого человеческого тела – от нуля по Цельсию с отметкой комнатной температуры где-то посередине.

Во Вселенной все по-другому. Как вам температура в 100 000 000 000 000 000 000 000 000 000 000 градусов? Это сто тысяч миллиардов миллиардов миллиардов градусов. А еще это температура Вселенной спустя крошечную долю секунды после Большого Взрыва, когда вся энергия, вещество и пространство, которому предстояло превратиться в планеты, петунии, пряники и специалистов по физике частиц, были расширяющимся шаром из кварк-глюонной плазмы. И пока космос не остыл во много миллиардов раз, в нем не могло существовать ничего, что можно было бы назвать предметом или явлением.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература