Теперь мы, наконец, приближаемся к своей цели, а именно к попытке понять, каким же образом могла произойти авария. В соответствии с изложенными представлениями аварийная защита (это те, поглощающие нейтроны, стержни) должна успевать входить в реакторное пространство за десять секунд, поскольку это и есть то минимальное время, за которое мощность реактора может возрасти в два с половиной раза. Причем это, так сказать, теоретический предел, реальный же интервал времени, конечно, должен быть больше.
Вполне естественно, что аварийная защита чернобыльского реактора была разработана так, чтобы за десять секунд перекрывать всю активную зону. Но в ту роковую ночь мощность реактора стала нарастать с периодом в три секунды. Поэтому аварийная защита просто не успела выполнить свои функции. Но как такое могло случиться? В чем дело?
Чтобы попытаться понять это, нам необходимо совершить еще один исторический экскурс.
Почти одновременно с открытием радиоактивности ученые начали проводить эксперименты, в которых пытались обнаружить изменение вероятности радиоактивных превращений (периодов полураспада) в зависимости от внешних условий. Радиоактивные образцы подвергали воздействию высоких и низких температур (А. Беккерель, П. Кюри, Э. Резерфорд), высоких давлений, погружали в глубокие шахты (750 м — Эльстер и Гейтель). Согласно авторитетному мнению основоположников ядерной физики (Э. Резерфорд, Дж. Чедвик, Ч. Д. Эллис, П. Кюри, М. Кюри), выходило, что вероятности ядерных процессов не зависят от внешних физико-химических условий. Это обстоятельство отражено в термине «постоянная радиоактивного распада». Развитие квантовой механики в 1930-е годы показало огромное различие атомных и ядерных масштабов размеров и энергий (примерно в миллион раз), что как будто подтверждало выводы основоположников.
Однако все это верно только на первый взгляд и характеризует положение вещей ровно настолько, насколько средняя температура всех больных в госпитале может охарактеризовать состояние конкретного пациента. Дело в том, что ядра атомов, входящих в таблицу Менделеева, имеют весьма различный «запас прочности». Подавляющее большинство из них, конечно, устойчивы, и никакие манипуляции с электронными оболочками не могут повлиять на устойчивость ядра. Но встречаются и такие атомы (например диспрозий-163), ядра которых теряют устойчивость при потере электронной оболочки. Природа устроила атомы гораздо «тоньше», чем мы привыкли думать.
Особенную чувствительность к состоянию своей атомной оболочки «проявляют» ядра, находящиеся либо близко к границе устойчивости, либо в возбужденном состоянии. Этот факт был осознан физиками далеко не сразу, а в течение нескольких десятилетий. Потребовалось кропотливое теоретическое и экспериментальное исследование природы слабых взаимодействий (мы о них уже говорили) и их тесной связи с электромагнитными взаимодействиями. Не последнюю роль в столь долгом периоде эволюции наших представлений сыграл авторитет ученых, которые были перечислены выше. Более того, значительной части физиков влияние электронной оболочки на ядерные процессы до сих пор кажется незначительным эффектом. Но это отнюдь не так. В 1996 году в ЦЕРНе команда экспериментаторов из разных стран продемонстрировала «слабость» этих эффектов. Они взяли изотоп рения-187, который в своем обычном состоянии почти стабилен: период его
К сказанному необходимо добавить, что раз период
Давайте попробуем еще раз кратко все суммировать, с тем чтобы ясна была основная цепь рассуждений.
Осколки деления урана-235 являются нейтронно-избыточными ядрами.
Появление запаздывающих нейтронов связано со скоростью
Изменение внешних условий (давление, электромагнитные поля) может ускорять
При ускорении