Мы уже не раз замечали, что жизнь и научная деятельность всякого ученого неразрывно связаны между собою, а потому говоря об одной, приходится то и дело обращаться к другой. В предыдущих главах было показано, при каких условиях у Ковалевской возникло и развилось призвание к математике и какое влияние имело оно на главнейшие события ее жизни. Мы знаем также, при каких условиях создавались отдельные ее труды. Но всего этого, конечно, недостаточно, чтобы составить себе понятие о значении их в истории науки. Мы уже говорили в предисловии, что для действительной оценки деятельности замечательного человека необходимы особые, специальные познания, и те люди, которые обладают только общим образованием, могут рассчитывать лишь на приблизительное понятие о такой деятельности; но последнее, при несовершенной полноте, может быть верным. Поясним это различие примером. Если мы выражаем отношение окружности к диаметру числом 3,14, это будет очень приблизительное отношение, но в то же время верное. Если же мы вместо этого числа возьмем число четыре – это будет неверно,
потому что, согласно доказательству, отношение окружности к диаметру больше трех и меньше четырех. Если мы с числом 3,14 сравним 3,1415926535, то последнее будет значительно точнее первого, но при всем том первое сохраняет свою верность. И здесь, как и при оценке научной деятельности Эйлера, Д’Аламбера и других, мы постараемся дать очень приблизительное, но верное понятие о научных заслугах Ковалевской. Для этого нам прежде всего необходимо сказать несколько слов об отличительных особенностях математики XIX века.Из истории математики известно, что люди очень медленно приближались к обобщениям и доходили до отвлеченных понятий; долгое время они под именем числа разумели только целое положительное число и не соглашались назвать числом даже дробь. Стремление к обобщению, развиваясь медленно, однако всё шло вперед, и понятие о числе распространилось мало-помалу не только на дроби, но появились также числа отрицательные, мнимые
и комплексные. То же обобщение и та же отвлеченность появились во взглядах на различного рода зависимости между величинами, или функции. Гаусс и Коши в первой четверти XIX века положили начало теории зависимостей, или функций. Гаусс был аналитик, геометр и физик; деятельность его была настолько многосторонней, что он не имел возможности посвящать много времени теории функций. Другой знаменитый математик, Риман, ученик Гаусса, обладавший глубоким философским умом, явился славным продолжателем трудов Гаусса и Коши, но его теория функций отличается большой сложностью и трудностью для изучения. Абелю и Якоби также принадлежат гениальные труды по теории функций. Многие другие великие математики XIX века с удивительным талантом прилагали понятия из теории функций к физике и механике, оставляя в стороне усовершенствование самой этой теории. Берлинскому же профессору Вейерштрассу принадлежит честь обоснования этой теории на простых и доступных началах. Его считают по ясности и строгости приемов прямым продолжателем Лагранжа. Вейерштрассу удалось создать теорию функций средствами одного анализа, без помощи геометрического метода, и тем оправдать мысль Гаусса о полной самостоятельности анализа. В молодости своей Вейерштрасс изучал труды пражского философа Больцано, относящиеся к философии математики. Больцано не был понят и оценен в свое время, но теперь имя его пользуется большой известностью среди учеников Вейерштрасса.