Читаем Сокровища звездного неба полностью

Представим себе теперь, что, сохраняя массу М, звезда катастрофически сжимается. Тогда ускорение на поверхности звезды a стремительно растет, а вместе с ним растет и вторая космическая скорость UII.  Теоретически говоря, может наступить момент, когда UII станет равной скорости света с (300 000 км/с). Как показывают расчеты, это наступит тогда, когда радиус сжимающегося тела (звезды) станет равным его так называемому гравитационному радиусу rg = 2fM/c2. Для Солнца rg = 3 км, и при этом средняя плотность Солнца должна составлять 1016 г/см3, что в 10 раз превосходит плотность атомного ядра.

Продолжая сжиматься далее, звезда, как говорят, уйдет под свой гравитационный радиус, т. е. ее радиус станет меньше rg. Для описания дальнейших событий классическая нерелятивистская физика не годится. Теория же относительности приводит к выводам столь же достоверным, сколь и парадоксальным. Главные из них заключаются в следующем.

Как известно, с точки зрения теории относительности не существует какого-то единого для всех точек Вселенной одинакового «мирового» времени. В каждой системе координат время течет по-своему. Если представить себе наблюдателя, находящегося на поверхности спадающейся, «коллапсирующей» звезды, то сжатие ее почти в «точку» произойдет за какие-нибудь несколько секунд. Но так события будут развиваться лишь в его, как говорят, «сопутствующей» системе координат. Внешний же, скажем, земной, наблюдатель увидит совсем иное.

Для него коллапс звезды будет происходить сначала быстро, а затем все медленнее и медленнее, асимптотически приближаясь к тому роковому моменту, когда радиус звезды станет равным rg. Собственно, этого момента воображаемый земной наблюдатель никогда не увидит, так как от начала коллапса до достижения гравитационного радиуса должна по его часам пройти вечность!

Спавшаяся внутрь себя массивная взорвавшаяся звезда превращается в черную дыру, или коллапсар. Когда она «уйдет под гравитационный радиус», ее излучение до нас дойти не сможет: ведь тогда UII становится больше с, а сверхсветовых скоростей по теории относительности не существует. Единственно, чем черная дыра сможет проявить себя,— это своим гравитационным (или электростатическим) полем. Если при этом вблизи нее находится газовое вращающееся облако и его частицы падают на черную дыру, как бы засасываясь ею, то такое облако (так показывают расчеты) приобретает форму диска и начинает достаточно мощно излучать в рентгеновском диапазоне волн.

Отсюда следует, что по крайней мере некоторые из космических рентгеновских источников излучения могут быть газовыми облаками, испытывающими аккрецию («падение») на рядом расположенную черную дыру. Кстати сказать, температура газового диска, засасываемого черной дырой, очень высока — порядка нескольких десятков миллионов кельвинов.

Кроме массы (а следовательно, и собственного гравитационного поля), черная дыра должна сохранить электрический заряд и вращательный момент сжавшейся звезды (если, конечно, она этими качествами обладала). Для случая электрически заряженной кол-лапсирующей массы произведены расчеты, приводящие к совершенно фантастическим выводам. Оказывается, в этом случае ушедшая под гравитационный радиус звезда сжимается не до нуля, а до некоторого предела, немного меньшего rg, а затем снова начинает расширяться, но... в другой Вселенной! Сторонники такой теоретической схемы полагают, что, кроме «нашей» Вселенной, есть множество других пространств, отделенных друг от друга бесконечно большими промежутками времени. Исчезнув из нашей Вселенной навсегда, сжавшаяся до предела электрически заряженная звезда может появиться в пространстве другой Вселенной как «белая дыра», т. е. как необычный расширяющийся объект.

Все эти новые идеи трудно усваиваются при первом и беглом знакомстве. Поэтому я рекомендую тем, кто ими заинтересовался, прочитать интересную книгу: Шкловский И.С. Звезды: Их рождение, жизнь и смерть.— М.: Наука, 1984, а также выступления Н.С.Кардашева на дискуссии о внеземных цивилизациях в Бюракане (Сборник "Проблема СЕТI").— М.: Мир, 1975, с. 166-173).

В темные зимние ночи в созвездии Тельца легко заметить маленькую тесную группу из шести слабо светящихся звездочек. Это — звездное скопление Плеяды, иногда называемое у нас в стране Стожарами. В телескоп скопление выглядит более многочисленным и включает в себя более сотни звезд. Все эти звезды не только на небе, но и в пространстве близки друг к другу и связаны между собой силами взаимного притяжения.

Таким образом, в отличие от созвездий, представляющих собой видимые на небе группировки на самом деле весьма далеких друг от друга звезд, звездные скопления являются физически связанными взаимным тяготением объединениями звезд.

Звездные скопления, не имеющие правильных очертаний, называют рассеянными звездными скоплениями. Составляющие их десятки или сотни звезд беспорядочно разбросаны на небольшом участке неба. Именно к такому типу звездных скоплений относятся Плеяды.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука