Читаем Сокровища звездного неба полностью

Как уже говорилось, различия в спектрах звезд вызваны главным образом не особенностями химического состава этих объектов, а различиями в температуре звездных атмосфер. В настоящее время в астрофизике принята единая классификация звездных спектров. По характеру спектров звезды распределены на классы, каждый из которых обозначен определенной буквой латинского алфавита. Вот эти спектральные классы звезд:

    R—N

  /

К-В—A—F— G—О—М.

  \

   S

От основной группы отходят две ветви — классы R, N и S. К этим классам отнесено сравнительно небольшое число холодных звезд, в спектрах которых наблюдаются полосы молекул углерода и циана и окиси углерода (классы R и N). В спектрах звезд класса S заметны полосы окисей титана и циркония. Спектры некоторых звезд приведены на рис. 2.

рис. 2

Для более точной классификации звездных спектров по интенсивности их линий и полос поглощения введены промежуточные спектральные классы, например 05, В7, А2 и т. п. Если при этом звезда принадлежит к звездам-карликам, перед ее спектральным классом добавляют букву «d», если к гигантам — букву «g», если к сверхгигантам — букву «с» (например, (1М5, gA2 и т. д.).

Спектры некоторых горячих звезд содержат яркие, как их называют, «эмиссионные», линии и полосы. В этом случае позади обозначения спектрального класса добавляют букву «е». В тех случаях, когда спектр звезды необычен, справа добавляется буква «р» (например, 05е или F3p). Знакомство со всей этой условной символикой совершенно необходимо при использовании таблиц физических характеристик отдельных звезд.

Характерные особенности основных спектральных классов приведены в таблице.

Для того чтобы характеризовать видимую яркость, или, как правильнее говорить, блеск звезд, введены условные единицы, называемые звездными величинами.

Еще в древности наиболее яркие звезды были названы звездами первой величины, а самые слабые, еле доступные невооруженному глазу — звездами шестой величины (обозначаются 1m, 2m и т. п.). Последующие уточнения и расширения этой шкалы звездных величин заставили ввести промежуточные дробные, а для особенно ярких объектов — нулевые и отрицательные звездные величины (0m, —1m и т. д.).

Пусть I1 и I2 — блеск двух звезд, то есть освещенности, создаваемые этими звездами на приемнике энергии (глаз, фотопластинка и т. п.), а т1 и т2 — соответственно их звездные величины. Как показали детальные исследования, эти величины связаны простым соотношением, называемым формулой Погсона:

I1/I2= 2,512m2-m1

Как следует из этой формулы, звезды, отличающиеся по видимому блеску на одну звездную величину, создают на Земле освещенности, различающиеся примерно в 2,5 раза.

Для работы с вычислительными машинами эту формулу удобнее представить в логарифмическом виде:

log I1/I2=0,4(m2-m1)

Чтобы охарактеризовать светимость звезды, астрономы вводят понятие абсолютной звездной величины (обозначается буквой М). Под этим термином понимается блеск данной звезды с расстояния 10 пк*.

*) пк-парсек, единица расстояния, равная 3,08*1013 км=3,26 светового года.

 Например, для Солнца М — 4,8m. Это значит, что с расстояния в 10 пк Солнце казалось бы звездочкой почти 5-й зв. величины. А вот, например, у Ригеля, самой яркой звезды созвездия Ориона, М = — 6,2m. Можно отсюда подсчитать (по формуле Погсона), что Ригель излучает света почти в 23 000 раз больше, чем Солнце.

Физические особенности звезд станут особенно наглядными, если мы воспользуемся так называемой диаграммой спектрсветимость. По ее горизонтальной оси (рис. 3, 4) отложены спектральные классы, по вертикальной — абсолютные звездные величины, характеризующие светимость звезды. Каждая звезда, в том числе и Солнце, может быть помещена только в одну определенную точку диаграммы. Изучение нескольких тысяч звезд показало, что на диаграмме спектр — светимость звезды располагаются в виде цепочек, групп, или, как их называют, "последовательностей". Каждой из последовательностей присвоено определенное обозначение, указанное в подписи под диаграммой. Солнце, например, лежит на главной последовательности (V), а почти горизонтальная прямая в верхней части диаграммы (в области больших светимостей) отмечает ветвь звезд-сверхгигантов (1а-0). Принадлежность звезды к той или иной последовательности вместе с ее светимостью и спектром полностью характеризует физические свойства звезды.

рис. 3

рис. 4

В древности звезды считались пеподвижными, а фигуры созвездий— неизменными. Однако в начале XVIII в. было обнаружено, что некоторые звезды со времен Гиппарха (XI в. до н. э.) явно сместились по отношению к другим звездам.

В настоящее время движение звезд в пространстве является строго доказанным фактом. Это движение можно обнаружить двумя способами: во-первых, по видимому смещению одних звезд по отношению к другим и, во-вторых, по спектру звезды.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука