Читаем Солнечная система (Астрономия и астрофизика) полностью

Не слишком быстро вращающееся однородное тело принимает форму сжатого эллипсоида вращения (эллипсоида Маклорена). Его параметры — большая и малая полуоси — однозначно определяются массой и угловой скоростью вращения (рис.7). Если вращать быстрее, появляются трехосные эллипсоиды (эллипсоиды Якоби). Их открытие — а они появились как решение некоторой системы уравнений — повергло ученый мир в изумление. Интуиция ясно говорила, что однородное вращающееся тело должно быть телом вращения, каламбур воспринимался как тавтология! Ан нет! Вращение тела не обязано давать тела вращения! Потом были открыты еще более экзотические тела: вращающиеся на боку груши и даже тела с волнистой поверхностью. Правда, подобная экзотика существует только на бумаге (употребим старое выражение, как-то неловко звучит «на электронных носителях»). Реальные тела вертятся медленно, и для них выполнена теорема Ляпунова: фигура равновесия осесимметрична и обладает экватором, т.е. каждое меридиональное сечение одинаково, северное и южное полушария одинаковы. Даже скучновато немного. Но природа изощренна и сумела обойти ограничения Ляпунова в тесных двойных и полуразделенных системах, где нарушено условие изолированности.


Рис.7. Формы вращающихся тел. Указаны последовательности фигур равновесия несжимаемых, «жидких» тел (сплошные линии) и сжимаемых, газовых тел (пунктир). Оси вращения у всех фигур на рисунке расположены вертикально.


Небесные тела лунных и более размеров резко неоднородны: плотность в центре существенно превышает плотность у поверхности. Для Земли — на порядок, для Юпитера — на 4-5 порядков, для Солнца — на 7 порядков. Так что однородные фигуры равновесия служат лишь крайне упрощенными моделями. Но в случае медленного вращения форму поверхности можно представить аналогичным (7) рядом Ляпунова:

f= R[f0+f1+f2 +…]       (8)

Тут требуются пояснения. Форму поверхности вращения естественно задавать уравнением r=f, связывающим широту с расстоянием от поверхности до центра масс r функциональной зависимостью f. Таков смысл левой части (8). В правой части R — характерный размер тела, например, радиус равновеликого шара. Тогда f0 тождественно равна единице, так что в нулевом приближении тело является шаром r=R — const. Остальные члены ряда дают малые поправки, причем fs пропорциональна qs. Здесь q=2R3/(GM) представляет собой безразмерный малый параметр, равный отношению центробежной силы к силе тяготения на экваторе шара массы М и радиуса R. Для Земли, Юпитера, Солнца q равно соответственно 0,0034; 0,083; 0,00002. Наибольшим значением q=0,139 в Солнечной системе обладает Сатурн.

Функция f1 имеет вид f1= Aq(1—3sin2), где число А определяется распределением масс внутри тела Т. Для однородного тела А=5/12. Для противоположного крайнего случая сосредоточенной в центре массы, окруженной невесомой атмосферой, А=1/6. Остальные fs можно найти последовательно методом Ляпунова.

Функция f, представляющая поверхность сжатого эллипсоида вращения Е, также может быть разложена в ряд (8), причем f0=1. f12(1—3sin2)/6, где е — эксцентриситет меридионального сечения. Подбирая его так, чтобы Aq=е2/6, добьемся совпадения Rf0 и Rf1 у Т и Е. Таким образом, любая фигура равновесия в нулевом приближении — шар, в первом — сжатый эллипсоид вращения.


Движение ИСЗ

Как рассчитывают трассы небесных тел в сложных гравитационных полях? Простых формул, подобных выведенным Кеплером и Ньютоном для описания движения частицы вокруг шара, для сложных полей не существует. Более того, за редчайшими исключениями вообще не существует абсолютно точных формул. Это следствие реальной сложности движений. Какими же средствами располагает современная наука? В самых общих чертах их можно разделить на две группы.

1. Аналитические методы. С их помощью сложное движение можно представить как наложение бесконечного числа простых движений. До предела упрощенный пример — знакомая по школьным учебникам формула суммы бесконечного числа членов геометрической прогрессии

1/x=1+(1-x)+(1-x)2+(1-x)3+…     (9)

Предположим, что марсиане умеют складывать, вычитать и умножать числа, представленные десятичными дробями, и знают, что есть и обратное умножению действие — деление, но делить не научились. Так вот, левую часть (9) марсиане смогут вычислить, складывая большое количество чисел из правой части, а каждое из них получается умножением (1—х) самого на себя. Уже на этом простейшем примере видны две особенности аналитического подхода.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука