Разработанные на основе такого расположения p-n-перехода по отношению к свету многопереходные матричные солнечные элементы, состоящие из большого числа микроэлементов, плоскости которых параллельны по отношению к падающему солнечному излучению (или расположены под небольшим углом к нему), действительно обладают высокой эффективностью собирания носителей в длинноволновой области спектра и позволяют получить значительную фото-ЭДС с единицы освещаемой поверхности.
Однако расчетным и экспериментальным путем было установлено, что из-за весьма небольших размеров микроэлементов рекомбинация созданных светом пар на освещаемой поверхности играет при параллельном расположении p-n-перехода относительно падающего излучения значительно большую роль, чем при перпендикулярном. Вследствие этого для увеличения эффективности собирания в коротковолновой области спектра необходимо создать на обращенной к свету поверхности дополнительный слой, легированный примесью противоположного типа проводимости, т. е. использовать частично структуру с перпендикулярным расположением p-n-перехода.
Если при параллельном расположении концентрация созданных светом пар M убывает от поверхности в глубь полупроводника как в n-, так и в p-области, то при перпендикулярном расположении это характерно лишь для обращенной к свету области кристалла, например n-области, в то время как в p-области наибольшее количество пар образуется у p-n-перехода. Концентрация пар на глубине l подчиняется соотношению, полученному в результате дифференцирования выражения, определяющего убывание энергии волны в е раз при поглощении света полупроводником:
M=N0α exp (-αl),
где N0- число квантов, падающих на единицу поверхности полупроводника.
Концентрация пар, уменьшающаяся в глубину полупроводника, может быть подсчитана для области поглощения полупроводникового материала с помощью зависимости а(Е) (см. рис. 2.1).
Результаты таких расчетов для кремния, выполненных при нескольких значениях длины волны, показаны на рис. 2.7. Вертикальные линии, ограничивающие области, определяемые диффузионной длиной носителей заряда в материале п- и p-типа, позволяют наглядно оценить процесс собирания носителей заряда при перпендикулярном расположении p-n-перехода относительно падающего излучения (см. рис. 2.6, a).
Ординаты построенных кривых пропорциональны α exp (—αl), абсциссы — расстоянию в глубь полупроводника от освещаемой поверхности, площадь между осями и каждой из кривых — потоку падающих квантов, а площадь, ограниченная кривой и ординатами, соответствующими l=lπ+Ln и l=lπ-Lp (заштрихованная часть), — току короткого замыкания кремниевой пластины с p-n-переходом.
Таким образом, отношение заштрихованной площади к общей площади под кривой дает возможность в соответствии с соотношением для квантового выхода внутреннего фотоэффекта определить эффективность собирания γ (при условии, конечно, что квантовый выход фотоионизации β=1).
Планарная конструкция солнечных элементов, изображенная на рис. 2.6,а, стала основной и получила наибольшее распространение. Такие солнечные элементы были созданы из самых разнообразных материалов, причем направления оптимизации этой конструкции можно легко определить, анализируя результаты расчетов, аналогичные выполненным для кремния и представленным в графической форме на рис. 2.7.
Очевидно, что для повышения γ и Ik3 необходимо увеличивать диффузионную длину неосновных носителей заряда по обе стороны p-n-перехода, что может быть достигнуто выбором соответствующих исходных материалов и сохранением высоких значений L в процессе изготовления p-n-переходов. При невозможности увеличить L в области полупроводника, примыкающей к освещаемой поверхности (Lp на рис. 2.6), необходимо приблизить p-n-переход к освещаемой поверхности, чтобы удовлетворялось соотношение Lp>>lπ, где lл — глубина p-n-перехода, и все созданные светом носители заряда могли быть собраны и разделены полем p-n-перехода, как будет видно из результатов исследований, описываемых в гл. 4 и 5.
Подобное же условие следует выполнять и для базовой области солнечного элемента (расположенной за p-n-переходом). Толщина солнечного элемента, определяемая в основном базовой областью, не должна быть меньше глубины проникновения в полупроводник излучения длинноволновой части фотоактивной области спектра (энергия квантов hv>Eg), а диффузионная длина неосновных носителей заряда в базовой области должна соответствовать толщине элемента и глубине проникновения света.
Вольт-амперная характеристика солнечного элемента