Читаем Солнечный луч полностью

Появление мутаций при действии ультрафиолетовых лучей наблюдается у всех одноклеточных и простейших многоклеточных организмов, на семенах многих растений. Если облучать ультрафиолетовыми лучами бактерии, простейших, клеточные культуры, то относительно небольшие дозы облучения увеличивают частоту возникающих мутаций от 1 тыс. до 1 млн. раз. При больших дозах облучения почти все выживающие клетки оказываются носителями тех или иных наследственных повреждений. Однако малая проникающая способность ультрафиолетовых лучей ограничивает возможности их использования для получения мутаций. У большинства организмов, и прежде всего у млекопитающих, половые клетки расположены в теле так глубоко, что ультрафиолетовые лучи их не достигают. (Только более крупные и высокоэнергичные кванты рентгеновских и гамма-лучей обладают достаточной для этого проникающей способностью.) И все же мутагенная активность ультрафиолетового излучения находит практическое применение. Лучистые и плесневые грибки, микроскопически малые по величине, производят могучие лечебные препараты — антибиотики. В повышении «производительности труда» грибков надежным помощником служат ультрафиолетовые лучи. Среди потомства облученных и мутировавших грибков отбирают наиболее производительных, которых снова облучают, добиваясь в конце концов нужных результатов.

С. И. Алиханян с сотрудниками вывел новые расы грибков, которые изготовляют антибиотики (террамицин и эритромицин) в 5—10 раз больше, чем исходные образцы. А всего за время использования антибиотиков в медицине производительность грибков удалось повысить в тысячи раз, а стоимость производства — значительно снизить. Так мутагенные свойства ультрафиолетовых лучей используются для селекции одноклеточных организмов и некоторых растений.

Нарушения, вносимые квантами ультрафиолетовых лучей в структуру молекул ДНК, могут быть различны. Если происходит замена одного пиримидинового основания другим (например, тимина — цитозином или урацилом) или пурина — пурином (аденина — гуанином и наоборот), то такие ошибки — их называют транзициями — не нарушают конфигурации молекулы ДНК; обычно они не распознаются и не устраняются восстановительными системами клетки (о них идет речь в главе V). Другой тип мутации — трансверсии, в которых происходит замена пурина пиримидином и наоборот, довольно заметно искажают скелет молекулы и обычно устраняются раньше, чем клетка успевает передать ошибочную информацию потомкам. Наконец, третий тип мутаций — выпадение (делеция) или вставка одного или нескольких азотистых оснований.

Каковы возможные последствия мутаций рассмотренных типов? Так как триплет азотистых оснований в молекуле ДНК соответствует одной аминокислоте в структуре кодируемого белка, то замена одного азотистого основания другим в ДНК (мутации первого и второго типов) означает замену аминокислоты; это может отразиться на функции будущего белка в клетке и даже на течении определенных обменных реакций. Мутации третьего типа могут давать гораздо более серьезные последствия: выпадение или вставка основания изменяет весь шифр, так как сдвигается граница между триплетами, и структура кодируемого белка очень сильно искажается.

Мутации возникают и при поедании корма, облученного короткими ультрафиолетовыми лучами, в котором в результате облучения образуются, очевидно, химические мутагены.

Мутации, возникающие в клетках тела многоклеточных животных, не могут оказать влияния на наследственность всего организма или его потомков. Их влияние распространяется лишь на потомство самой облученной клетки. Но иногда, при каких-то невыясненных еще полностью условиях, перерождение клетки может зайти так далеко, что она превратится в раковую. Длительное воздействие солнечного света или ультрафиолетовых лучей искусственных источников в больших дозах вызывает образование злокачественных опухолей у подопытных животных (мышей, крыс) на участках кожи, не защищенных шерстью: на носу, ушах, хвосте. После облучения роговой слой кожи утолщается, и чтобы вызвать образование опухоли, нужно начинать с большой дозы лучей и постепенно ее увеличивать.

Доказана также роль солнечного света в происхождении рака кожи у людей. Он появляется исключительно на открытых участках кожи (на лице, шее, кистях рук) и главным образом у людей, длительно находящихся под воздействием солнечных лучей. Заболеваемость раком кожи тем выше, чем больше солнечной радиации в данном географическом районе. При этом чаще всего болеют не местные жители, а белокожие приезжие из более северных районов, менее приспособленные к данным условиям. Так, в южных штатах США белые болеют раком кожи в 10—12 раз чаще, чем негры, а на Гавайских островах — даже в 42 раза чаще.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем
Память. Пронзительные откровения о том, как мы запоминаем и почему забываем

Эта книга предлагает по-новому взглянуть на одного из самых верных друзей и одновременно самого давнего из заклятых врагов человека: память. Вы узнаете не только о том, как работает память, но и о том, почему она несовершенна и почему на нее нельзя полностью полагаться.Элизабет Лофтус, профессор психологии, одна из самых влиятельных современных исследователей, внесшая огромный вклад в понимание реконструктивной природы человеческой памяти, делится своими наблюдениями над тем, как работает память, собранными за 40 лет ее теоретической, экспериментальной и практической деятельности.«Изменчивость человеческой памяти – это одновременно озадачивающее и досадное явление. Оно подразумевает, что наше прошлое, возможно, было вовсе не таким, каким мы его помним. Оно подрывает саму основу правды и уверенности в том, что нам известно. Нам удобнее думать, что где-то в нашем мозге лежат по-настоящему верные воспоминания, как бы глубоко они ни были спрятаны, и что они полностью соответствуют происходившим с нами событиям. К сожалению, правда состоит в том, что мы устроены иначе…»Элизабет Лофтус

Элизабет Лофтус

Научная литература / Психология / Образование и наука
Физика в быту
Физика в быту

У многих физика ассоциируется с малопонятным школьным предметом, который не имеет отношения к жизни. Но, прочитав эту книгу, вы поймете, как знание физических законов помогает находить ответы на самые разнообразные вопросы, например: что опаснее для здоровья – курение, городские шумы или электромагнитное загрязнение? Почему длительные поездки на самолетах и поездах утомляют? Как связаны музыка и гениальность? Почему работа за компьютером может портить зрение и как этого избежать? Что представляет опасность для космонавтов при межпланетных путешествиях? Как можно увидеть звук? Почему малые дозы радиации полезны, а большие губительны? Как связаны мобильный телефон и плохая память? Почему правильно подобранное освещение – залог хорошей работы и спокойного сна? Когда и почему появились радиоактивные дожди?

Алла Борисовна Казанцева , Вера Александровна Максимова

Научная литература / Детская познавательная и развивающая литература / Научно-популярная литература / Книги Для Детей / Образование и наука