Читаем Соседи по планете. Насекомые полностью

Впервые люди смогли взглянуть на мир глазами насекомого в 1918 году, когда немецкий ученый Экснер сфотографировал окно и видневшийся за окном собор сквозь глаз светляка, помещенный на предметное стекло микроскопа. Эта и опубликованная вскоре знаменитая фотография человека, сделанная сквозь глаз насекомого, наглядно показали, что насекомое действительно видит маленькие участки каждым глазком в отдельности и что маленькие участки складываются в одно большое целое. Такая теория даже получила название «мозаичной» и стала классической. Ученые, конечно, понимали, что увиденное ими изображение окна или человеческого лица — вовсе не то же самое, что видит насекомое: ведь изображение передается в мозг, и как оно там обрабатывается, какими становятся образы, было неизвестно. Конечно, рано или поздно люди бы узнали это — ведь Экснер сделал только первый шаг и пользовался он весьма примитивной, с нашей точки зрения, аппаратурой. Сейчас, когда ученые имеют возможность использовать новейшие достижения техники, когда в дело включились биофизики и электроники, когда в глаз насекомому удается вживить самые тончайшие электроды, когда люди научились проникать в мозг насекомого и получать от него нужную информацию, вопрос этот мог бы быть как-то прояснен. Но как ни парадоксально, именно достижения науки, новая техника и аппаратура не только не прояснили вопрос, что и как видит насекомое, но и значительно усложнили его.

По классической теории «мозаичного видения» считалось, что каждый глазок-омматидий имеет «сектор обзора», равный 2–3 градусам, причем лучи света должны падать прямо на глазок под одним определенным углом. Таким образом, получилось, что каждое изображение, принимаемое омматидием, вплотную примыкает к изображению соседнего омматидия, и так далее.

Сегодняшние электрофизиологические опыты показали: совсем не обязательно, чтоб лучи падали на глазок под определенным, одним-единственным, углом — углы могут быть разные, а главное, сектор обзора каждого омматидия по крайней мере в десять раз больше, чем предполагает классическая теория. Таким образом, каждый глазок видит гораздо больше, и изображения, принимаемые отдельными омматидиями, перекрывают друг друга. И как они преобразуются в мозгу насекомых, пока еще совершенно не ясно.

Классическая теория оказалась несостоятельной, новая пока еще не набрала достаточных фактов, чтоб сделать обобщения и выводы. Но это вовсе не значит, что люди вообще ничего не могут сказать о зрении насекомых. Напротив, по другим направлениям, изучавшим различные аспекты зрения насекомых, сделано немало интереснейших открытий, которые позволяют судить и о «дальнозоркости», и о «близорукости» насекомых, и об остроте их зрения, о реакции на цвет и форму предметов.

Начнем с того, что насекомые в большинстве своем «близоруки». Конечно, среди них есть и такие, как муха диопсида, способная видеть на расстоянии 135 метров, но это как раз то исключение, которое подтверждает правило. Обычно же насекомые не видят дальше двух метров. Так видит самая зоркая из наших насекомых — стрекоза, а пчела уже на расстоянии метра ничего не увидит. Для шмеля в данном случае предельное расстояние — полметра. Но и это хорошо по сравнению с другими насекомыми. Некоторые из них, как, например, рабочие муравьи, проводящие большую часть жизни в муравейнике, вообще способны различать лишь свет и темноту.

(Правда, советский ученый Г. А. Мазохин-Поршняков, сумевший вживить в глаз муравья электрод толщиной в один микрон, выяснил, что некоторым из этих насекомых — конечно, не тем, кто проводит жизнь в темноте, — свойственно цветовое зрение!)

Такое различие в способностях видеть на расстоянии не случайно.

Мы теперь точно знаем, что все строение, все действия, все повадки животных прочно связаны с образом их жизни и со средой, в которой они живут. Именно среда и образ жизни создали все, чем располагают животные, и определили их «способности».

Классическим примером тому может служить жучок, живущий в воде и за свою манеру плавать по поверхности кругами прозванный вертячкой. Люди заметили, что у этого жука не два, а четыре глаза, стоящие друг от друга на расстоянии, — как бы пара верхних и пара нижних. Потом выяснили, что это все-таки не четыре, а два глаза, но разделившиеся. Зачем это вертячке?

Известно, что видимость в воде и в воздухе различная. Если глаз приспособлен видеть в воде, то в воздухе он будет беспомощен, и наоборот. А вот вертячка может с одинаковым успехом смотреть и в воде и над водой, потому что пара «верхних» глаз у нее приспособлена видеть в воздушной среде, «нижняя» — в водной.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже